Inspired by temperature

Minichiller® OLÉ
Unichiller® OLÉ

This documentation does not contain a device-specific technical appendix.
You can request the full operating instructions from info@huber-online.com. Please give the model designation and serial number of your temperature control unit in your e-mail.
Minichiller®
Unichiller®
OLÉ

This operation manual is a translation of the original operation manual. Also for models with heater.

VALID FOR:

DESKTOP
Minichiller® 280 OLÉ
Minichiller® 300 OLÉ
Minichiller® 500 OLÉ
Minichiller® 600 OLÉ
Minichiller® 900 OLÉ
Unichiller® 007 OLÉ
Unichiller® 01x OLÉ
Unichiller® 02x OLÉ

Abbreviations used in model names:
Without = with air cooling, P = for applications with high pressure drop, w = water cooled,
-H = heating
The control panel:
Displays and keys

[26] Overtemperature protection (depending on model)
[A] Display
[B] Arrow keys
[C] SET key
[D] ESC key
[E] Start/Stop key
# Table of contents

V1.5.0en/09.08.21/1.0.0

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>12</td>
</tr>
<tr>
<td>1.1 Identification / symbols in the operation manual</td>
<td>12</td>
</tr>
<tr>
<td>1.2 Information on the EU Declaration of Conformity</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Safety</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 Symbols used for Safety Instructions</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2 Representation of safety identifiers on the temperature control unit</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3 Proper operation</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4 Reasonably foreseeable misuse</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Responsible bodies and operators – Obligations and requirements</td>
<td>14</td>
</tr>
<tr>
<td>1.4.1 Obligations of the responsible body</td>
<td>14</td>
</tr>
<tr>
<td>1.4.1.1 Proper disposal of resources and consumables</td>
<td>15</td>
</tr>
<tr>
<td>1.4.1.2 Temperature control unit with natural refrigerants (NR)</td>
<td>15</td>
</tr>
<tr>
<td>1.4.1.3 Temperature control units with fluorinated greenhouse gases/refrigerants</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2 Requirements for operators</td>
<td>18</td>
</tr>
<tr>
<td>1.4.3 Obligations of the operators</td>
<td>18</td>
</tr>
<tr>
<td>1.5 General information</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1 Description of workstation</td>
<td>18</td>
</tr>
<tr>
<td>1.5.2 Safety devices to DIN 12876</td>
<td>18</td>
</tr>
<tr>
<td>1.5.2.1 Mechanical overtemperature protection</td>
<td>19</td>
</tr>
<tr>
<td>1.5.2.2 Low level protection</td>
<td>19</td>
</tr>
<tr>
<td>1.5.3 Further protective devices</td>
<td>19</td>
</tr>
<tr>
<td>1.5.3.1 Power interruption</td>
<td>19</td>
</tr>
<tr>
<td>1.6 Exemplary illustrations of the cooling variants</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1 Consequence of inadequate energy dissipation</td>
<td>21</td>
</tr>
<tr>
<td>2. Commissioning</td>
<td>22</td>
</tr>
<tr>
<td>2.1 In-plant transport</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1 Lifting and transporting the temperature control unit</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1.1 Temperature control unit with lifting eyes</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1.2 Temperature control unit without lifting eyes</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2 Mounting/removing leveling feet</td>
<td>23</td>
</tr>
<tr>
<td>2.1.3 Positioning the temperature control unit</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3.1 Temperature control unit with casters</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3.2 Temperature control unit without casters</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Unpacking</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Ambient conditions</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1 EMC-specific notes</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Installation conditions</td>
<td>26</td>
</tr>
<tr>
<td>2.5 Recommended temperature control and cooling water hoses</td>
<td>27</td>
</tr>
<tr>
<td>2.6 Wrench sizes and torques</td>
<td>27</td>
</tr>
<tr>
<td>2.7 Temperature control units with water cooling</td>
<td>28</td>
</tr>
<tr>
<td>2.8 Preparations for operation</td>
<td>29</td>
</tr>
<tr>
<td>2.8.1 Unscrewing/activating the leveling feet (if any)</td>
<td>29</td>
</tr>
<tr>
<td>2.8.2 Opening/closing the bypass valve</td>
<td>30</td>
</tr>
<tr>
<td>2.8.3 Enable / Disable silent operation (optional)</td>
<td>30</td>
</tr>
<tr>
<td>2.8.4 Installing collecting container</td>
<td>31</td>
</tr>
<tr>
<td>2.8.5 Connecting the functional earth</td>
<td>31</td>
</tr>
</tbody>
</table>
2.9 Connecting externally closed application ...................................................... 31
2.9.1 Connecting an externally closed application ............................................ 31
2.10 Connecting to the power supply ................................................................. 32
2.10.1 Connection using socket with protective earth (PE) ............................... 32
2.10.2 Connection via hard wiring ....................................................................... 32

3 Function description 33
3.1 Function description of the temperature control unit .................................. 33
3.1.1 General functions ....................................................................................... 33
3.1.2 Other functions ......................................................................................... 33
3.2 Information on the thermal fluids ................................................................. 33
3.3 To be noted when planning the test .............................................................. 34
3.4 Display and control instruments ................................................................. 35
3.4.1 Display ....................................................................................................... 35
3.4.2 Control instruments .................................................................................... 36
3.4.2.1 Arrow keys ........................................................................................... 36
3.4.2.2 SET key ............................................................................................... 36
3.4.2.3 ESC key ............................................................................................... 37
3.4.2.4 Start/Stop key ...................................................................................... 37
3.4.3 Adjusting settings ...................................................................................... 37
3.5 Menu function .............................................................................................. 38
3.6 Functional examples ..................................................................................... 39
3.6.1 Selecting a language .................................................................................. 39
3.6.2 Setting the setpoint ................................................................................... 39
3.6.3 Changing the Auto-Start function ............................................................. 39

4 Setup mode 40
4.1 Setup mode .................................................................................................. 40
4.1.1 Turning on the temperature control unit .................................................. 40
4.1.2 Turning off the temperature control unit ................................................... 40
4.1.3 Setting the overtemperature (OT) protection .......................................... 40
4.1.3.1 General information on the overtemperature protection .................... 40
4.1.3.2 Setting the overtemperature protection ................................................. 41
4.1.4 Testing the overtemperature protection for functionality ....................... 41
4.2 Filling, venting and draining ........................................................................ 42
4.2.1 Filling and venting externally closed application ...................................... 42
4.2.1.1 Filling and venting with >Sight glass< [23] ............................................. 43
4.2.1.2 Filling and venting with >Level indicator and drain< [38] ..................... 44
4.2.2 Draining externally closed applications ..................................................... 45
4.2.2.1 Draining with >Sight glass< [23] .......................................................... 45
4.2.2.2 Draining with >Level indicator and drain< [38] .................................... 45

5 Normal operation 47
5.1 Automatic operation .................................................................................... 47
5.1.1 Temperature control .................................................................................. 47
5.1.1.1 Starting the temperature control process ............................................. 47
5.1.1.2 Ending the temperature control process .............................................. 47

6 Interfaces and data communication 48
6.1 Controller interfaces .................................................................................... 48
6.1.1 USB-2.0 interface ..................................................................................... 48
6.1.1.1 USB-2.0 interface, device ................................................................. 48
6.1.2 RS232 jack ................................................................................................. 48
6.2 Interfaces on the temperature control unit (optional) ........................................ 48
6.2.1 RS232 jack ................................................................................................... 49
6.2.2 Connection jack for Pt100 process display sensor ........................................ 49
6.2.3 Jack ECS (External Control Signal) standby ................................................ 49
6.2.4 Connector POKO (floating contact) alarm .................................................. 50
6.3 Data communication ..................................................................................... 51
6.3.1 LAI commands ............................................................................................ 51
6.3.1.1 Command “V” (Verify) ............................................................................ 52
6.3.1.2 Command “L” (Limit) ............................................................................... 52
6.3.1.3 Command “G” (General) ......................................................................... 53
6.3.2 PP commands .............................................................................................. 54

7 Service/maintenance ....................................................................................... 56
7.1 Displays in the event of faults ....................................................................... 56
7.2 Maintenance .................................................................................................... 57
7.2.1 Function check and visual inspection ......................................................... 57
7.2.2 Replacing temperature control or coolant hoses ......................................... 58
7.2.2.1 Replacing temperature control hoses ..................................................... 58
7.2.2.2 Replacing coolant hoses ........................................................................ 58
7.2.3 Clean liquefier fins (air-cooled temperature control unit) ............................. 59
7.2.4 Clean hat-type strainer (dirt trap) (water-cooled temperature control unit) .... 60
7.3 Thermal fluid inspection, replacement and circuit cleaning ........................... 61
7.3.1 Thermal fluid replacement ......................................................................... 61
7.3.1.1 Externally closed application .................................................................. 61
7.3.2 Rinsing the thermal fluid circuit ................................................................. 61
7.3.2.1 Rinsing a thermofluid circuit with >Sight glass< [23] .............................. 62
7.3.2.2 Rinsing the thermofluid circuit with >Level indicator and drain< [38] ....... 63
7.4 Cleaning the surfaces ...................................................................................... 63
7.5 Inspect the mechanical seal .......................................................................... 64
7.6 Plug contacts .................................................................................................. 64
7.7 Decontamination/repairs ............................................................................... 64

8 Shutting down .................................................................................................. 65
8.1 Safety instructions and basic principles ......................................................... 65
8.2 Switch-off ....................................................................................................... 65
8.3 Draining the temperature control unit ............................................................ 66
8.4 Draining the cooling water ........................................................................... 66
8.4.1 Draining process ........................................................................................ 66
8.5 Deinstalling the collecting container ............................................................... 66
8.6 Uninstalling an external application ............................................................... 67
8.7 Packing .......................................................................................................... 67
8.8 Shipping .......................................................................................................... 67
8.9 Disposal .......................................................................................................... 68
8.10 Contact data .................................................................................................. 68
8.10.1 Telephone number: Customer Support .................................................... 68
8.10.2 Telephone number: Sales .......................................................................... 68
8.10.3 Email address: Customer Support ............................................................ 68
8.11 Certificate of Compliance ............................................................................ 68

9 Annex ............................................................................................................... 69
Foreword

Dear Customer,

Thank you for choosing a temperature control unit from Peter Huber Kältemaschinenbau SE. You have made a good choice. Thank you for your trust.

Please read the operation manual carefully before putting the unit into operation. Strictly follow all notes and safety instructions.

Follow the operation manual with regard to transport, start-up, operation, maintenance, repair, storage and disposal of the temperature control unit.

We fully warrant the temperature control unit for the specified intended operation.

The models listed on page 5 are referred to in this operation manual as temperature control units and Peter Huber Kältemaschinenbau SE as Huber company or Huber.

Liability for errors and misprints excluded.

The following trademarks and the Huber logo are registered trademarks of Peter Huber Kältemaschinenbau SE in Germany and/or other countries worldwide: BFT®, CC®, Chili®, Com.G@te®, Compatible Control®, CoolNet®, DC®, E-grade®, Grande Fleur®, Huber Piccolo®, KISS®, Minichiller®, Ministat®, MP®, MPC®, Peter Huber Minichiller®, Petite Fleur®, Pilot ONE®, RotaCool®, Rotostat®, SpyControl®, SpyLight®, Tango®, TC®, UC®, Unical®, Unichiller®, Unimotive®, Unipump®, Unistat®, Unistat Tango®, Variostat®. The following trademarks are registered in Germany to DWS Synthesetechnik: DW-Therm®, DW-Therm HT®. The following trademark is a registered trademark of BASF SE: Glysantin®.
1 Introduction

1.1 Identification / symbols in the operation manual

The following identifications and symbols are used in the texts and illustrations.

<table>
<thead>
<tr>
<th>Identification / symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>Reference to information / procedure.</td>
</tr>
<tr>
<td>»TEXT«</td>
<td>Reference to a chapter in the operation manual. In the digital version, the text is clickable.</td>
</tr>
<tr>
<td>&gt;TEXT&lt; [NUMBER]</td>
<td>Reference to the wiring diagram in the annex. The designation and the search digit are specified.</td>
</tr>
<tr>
<td>&gt;TEXT&lt; [LETTER]</td>
<td>Reference to a drawing in the same paragraph. The designation and the search digit are specified.</td>
</tr>
<tr>
<td>▪</td>
<td>List, first level</td>
</tr>
<tr>
<td>–</td>
<td>List, second level</td>
</tr>
</tbody>
</table>

1.2 Information on the EU Declaration of Conformity

The equipment complies with the basic health and safety requirements of the European Directives listed below:

- Machinery Directive
- Low Voltage Directive
- EMC Directive

1.3 Safety

1.3.1 Symbols used for Safety Instructions

Safety instructions are marked by the below combinations of pictograms and signal words. The signal word describes the classification of the residual risk when disregarding the operation manual.

**DANGER**

Denotes an immediate hazardous situation that will result in death or serious injuries.

**WARNING**

Denotes a general hazardous situation that may result in death or serious injuries.

**CAUTION**

Denotes a hazardous situation that can result in injury.

**NOTE**

Denotes a situation that can result in property material damage.

**INFORMATION**

Denotes important notes and usable hints.
Introduction

Chapter 1 OPERATION MANUAL

V1.5.0en/09.08.21//1.0.0 Minichiller® OLÉ, Unichiller® OLÉ

1.3.2 Representation of safety identifiers on the temperature control unit

The following pictograms are used as safety identifiers. The table gives an overview of the safety identifiers used here.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory sign</td>
<td>- Observe the instructions</td>
</tr>
<tr>
<td>Warning sign</td>
<td>- General warning sign</td>
</tr>
<tr>
<td></td>
<td>- Observe the instructions</td>
</tr>
<tr>
<td></td>
<td>- Warning of electrical voltage</td>
</tr>
<tr>
<td></td>
<td>- Warning of hot surface</td>
</tr>
<tr>
<td></td>
<td>- Warning of flammable substances</td>
</tr>
</tbody>
</table>

1.3.3 Proper operation

**DANGER**

Operating the temperature control unit in a potentially explosive area

DEATH THROUGH EXPLOSION

- Do NOT install or start up the temperature control unit within an ATEX zone.
Improper use

SERIOUS INJURY AND PROPERTY DAMAGE

- Store the operation manual where it is easy to access in close proximity to the temperature control unit.
- Only adequately qualified operators may work with the temperature control unit.
- Operators must be trained before handling the temperature control unit.
- Check that the operators have read and understood the operation manual.
- Define precise responsibilities of the operators.
- Personal protective equipment must be provided to the operators.
- Be sure to follow the responsible body’s safety rules to protect life and limb and to limit damages!

Modifications to the temperature control unit by third-parties

DAMAGE TO THE TEMPERATURE CONTROL UNIT

- Do not allow third parties to make technical modifications to the temperature control unit.
- The EU declaration of conformity becomes invalid if any modifications are made to the temperature control unit without the approval of Huber.
- Only specialists trained by Huber may carry out modifications, repairs or maintenance work.
- The following must be observed without fail:
  - Only use the temperature control unit in a fault-free condition!
  - Have the start-up and repairs carried out by specialists only!
  - Do not ignore, bypass, dismantle or disconnect any safety devices!

The temperature control unit must not be used for any purposes other than temperature control in accordance with the operation manual.

The temperature control unit is made for industrial use. The temperature control unit is used to maintain the temperature of applications, such as glass or metal reactors or other expedient items in laboratories and industry. Flow-through coolers and calibration baths must be used only in combination with Huber temperature control units. Only use thermal fluids suitable for the overall system. The cooling or heating capacity is provided at the pump connections or - where present - in the tempering bath. For the technical specification, refer to the datasheet. → From page 69, section »Annex«. Install, set up and operate the temperature control unit according to the instructions in this operation manual. Any failure to comply with the operation manual is considered as improper operation. The temperature control unit was manufactured according to the state of the art and the recognized safety rules and regulations. Safety devices are installed in your temperature control unit.

1.3.4 Reasonably foreseeable misuse

Use with medical devices (e.g. in Vitro diagnostic procedure) or for direct foodstuff temperature control is NOT permissible.

The temperature control unit must NOT be used for any purposes other than temperature control in accordance with the operation manual.

The manufacturer accepts NO liability for damage caused by technical modifications to the temperature control unit, improper handling or use of the temperature control unit if the operation manual is not observed.

1.4 Responsible bodies and operators – Obligations and requirements

1.4.1 Obligations of the responsible body

The operation manual is to be stored where it is easy to access in close proximity to the temperature control unit. Only adequately qualified operators (e.g. chemists, CTA, physicists etc.) are permitted to work with the temperature control unit. Operators must be trained before handling the temperature control unit. Check that the operators have read and understood the operation manual. Define precise responsibilities of the operators. Personal protective equipment must be provided to the operators.
The responsible body must install a condensation water / thermal fluid drip tray below the temperature control unit.

The use of a drip tray may be prescribed by national legislation for the installation area of the temperature control unit (incl. accessory). The responsible body must check and apply the national regulations applicable for it accordingly.

The temperature control unit complies with all applicable safety standards.

Your system, which uses our temperature control unit, must be equally safe.

The responsible body must design the system to ensure it is safe.

Huber is not responsible for the safety of your system. The responsible body is responsible for the safety of the system.

Although the temperature control unit provided by Huber meets all the applicable safety standards, integration into a system may give rise to hazards that are characteristic of the other system’s design and beyond the control of Huber.

It is the responsibility of the system integrator to ensure that the overall system, into which this temperature control unit is integrated, is safe.

The [Mains isolator] if present) can be locked in the off position to facilitate safe system installation and maintenance of the temperature control unit. It is the responsibility of the responsible body to develop any lock-out/tag-out procedure for the energy source in accordance with local regulations (e.g. CFR 1910.147 for the US).

1.4.1.1 Proper disposal of resources and consumables

Do comply with all national disposal regulations applicable for you. Contact your local waste management company for any questions concerning disposal.

<table>
<thead>
<tr>
<th>Material / Aids</th>
<th>Disposal / Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging material</td>
<td>Keep the packaging material for future use (e.g. transport).</td>
</tr>
<tr>
<td>Thermal fluid</td>
<td>Please refer to the safety data sheet of the thermal fluid used for information on its proper disposal. Use the original thermal fluid container when disposing it.</td>
</tr>
<tr>
<td>Filling accessories, e.g. beaker</td>
<td>Clean the filling accessories for reuse. Make sure that the materials and cleaning agents used are properly disposed of.</td>
</tr>
<tr>
<td>Aids such as towels, cleaning cloths</td>
<td>Tools used to take up spilled thermal fluid must be disposed of in the same fashion as the thermal fluid itself. Tools used for cleaning must be disposed of depending on the cleaning agent used.</td>
</tr>
<tr>
<td>Cleaning agents such as stainless steel cleaning agents, sensitive-fabrics detergents</td>
<td>Please refer to the safety data sheet of the cleaning agent used for information on its proper disposal. Use the original containers when disposing of large quantities of cleaning agents.</td>
</tr>
<tr>
<td>Consumables such as air filter mats, temperature control hoses</td>
<td>Please refer to the safety data sheet of the consumables used for information on their proper disposal.</td>
</tr>
</tbody>
</table>

1.4.1.2 Temperature control unit with natural refrigerants (NR)

**WARNING**

Over 8 g refrigerant per m³ room air

**DEATH OR SERIOUS INJURY DUE TO EXPLOSION**

- Observe the rating plate (amount of natural refrigerant contained) and the room size (maximum room concentration of natural refrigerant in case of leakage) when installing the temperature control unit.
- Over 8 g refrigerant per m³ room air: A gas warning sensor must be fitted and functioning.
- The gas warning sensor must be calibrated and maintained at regular intervals (between 6 and 12 months).
- The temperature control unit is not approved for operation in an ATEX zone.

Huber products with natural refrigerants work with numerous proven, safe and highly-sustainable technologies. The relevant standards and regulations for temperature control units with natural refrigerants contain a number of stipulations, the importance of complying with which is set out below. Please additionally: Page 13, section »Proper operation«.
Huber temperature control units are constructed to be permanently sealed and are carefully checked for leak tightness. Temperature control units with more than 150 g natural refrigerant are equipped with an additional gas warning sensor. To find out whether your temperature control unit is equipped with a gas warning sensor, refer to the data sheet. → From page 69, section »Annex«.

For the filling capacity of the temperature control unit, refer to the data sheet. → From page 69, section »Annex«. Or to the rating plate on the back of the temperature control unit. Please also consider: → Page 24, section »Ambient conditions« and → Page 26, section »Installation conditions«.

<table>
<thead>
<tr>
<th>Class of application field</th>
<th>Application field</th>
<th>Example of the installation location</th>
<th>Max. quantity of refrigerant</th>
<th>AND</th>
<th>Max. permissible quantity above ground level (GL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>General</td>
<td>Publicly accessible area in a public building</td>
<td>8 g/m³ ambient air</td>
<td>1.5 kg</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Monitored</td>
<td>Laboratories</td>
<td>2.5 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Access only for authorized persons</td>
<td>Production equipment</td>
<td>10.0 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature control units with more than 1 kg refrigerant must not be installed below ground level (GL).

**Temperature control units with up to 150 g natural refrigerant**

- The temperature control unit has been constructed to the requirements of EU and EFTA countries.
- Use the table as guidance for classifying the application field. Respect the max. refrigerant quantity stated therein.

**Temperature control units WITH pre-installed gas warning sensor and > 150 g natural refrigerant**

- The temperature control unit has been constructed to the requirements of EU and EFTA countries.
- Use the table as guidance for classifying the application field. Respect the max. refrigerant quantity or the permissible highest quantity above ground level (GL) stated therein.
- **Ventilation with optional supply and exhaust air connection**: Use the temperature control unit's supply and exhaust air connection to connect it to the building's exhaust system. For the exact position please refer to the wiring diagram. → From page 69, section »Annex«. First, remove the cover to the air inlet connection; an air filter mat is installed behind it. This air filter mat must be checked / replaced at regular intervals so that the air flowing into the temperature control unit is not reduced. → Page 57, section »Function check and visual inspection«. Connect the building's exhaust system with the temperature control unit's exhaust air port. The cover of the supply air port must not be removed if the exhaust system provided in a building is not used.
- The mounting plate for mounting a gas warning sensor is located inside the temperature control unit in the vicinity of the »Cable entry gas warning sensor< [100].
- For the position of the »Cable entry gas warning sensor< [100] please refer to the wiring diagram. → From page 69, section »Annex«.
- Additional information on the pre-installed gas detection sensor:
  - The built-in gas detection sensor enables a safety shutdown at 20% of the lower explosive limit via a power disconnect relay that is to be installed by the operator. The temperature control unit is thus switched off early and safely in case of fault.
  - A 24 V DC external power supply must be available for the pre-installed gas warning sensor. The alarm output of the gas warning sensor uses a 4 - 20 mA signal. Please refer to the data sheet of the gas warning sensor for further technical information. A separate processing unit is available as an accessory for the control of the power disconnect relay. The processing unit provides a potential-free switching contact and simultaneously provides the power supply and analysis of the gas warning sensor. Both variants require the operator to provide the necessary dimensioning and installation. Please refer to the data sheet of the gas warning sensor for the technical information necessary for the installation. The alarm of the gas detection system can be connected to the operator’s alarm control unit. The operator is responsible for this and for the other measures.
  - The operator is responsible for the calibration of the gas detection sensor prior to initial operation and the observance of calibration and maintenance intervals according to the
operating manual. We recommend to set calibration and maintenance intervals between 6 and 12 months if no information is provided. For increased safety requirements, shorter intervals can be specified. On request we will recommend a specialist company to carry out the calibration and maintenance.

**Temperature control units WITHOUT pre-installed gas warning sensor and > 150 g natural refrigerant**

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 8 g refrigerant per m³ room air</td>
</tr>
<tr>
<td>DEATH OR SERIOUS INJURY DUE TO EXPLOSION</td>
</tr>
<tr>
<td>➢ Observe the rating plate (amount of natural refrigerant contained) and the room size (maximum room concentration of natural refrigerant in case of leakage) when installing the temperature control unit.</td>
</tr>
<tr>
<td>➢ Over 8 g refrigerant per m³ room air: A gas warning sensor must be fitted and functioning.</td>
</tr>
<tr>
<td>➢ The gas warning sensor must be calibrated and maintained at regular intervals (between 6 and 12 months).</td>
</tr>
<tr>
<td>➢ The temperature control unit is not approved for operation in an ATEX zone.</td>
</tr>
</tbody>
</table>

- The temperature control unit has been constructed to the requirements of EU and EFTA countries.
- Use the table as guidance for classifying the application field. Respect the max. refrigerant quantity or the permissible highest quantity above ground level (GL) stated therein.

- **Ventilation with optional supply and exhaust air connection**: Use the temperature control unit’s supply and exhaust air connection to connect it to the building’s exhaust system. For the exact position please refer to the wiring diagram. ➢ From page 69, section »Annex«. First, remove the cover to the air inlet connection; an air filter mat is installed behind it. This air filter mat must be checked / replaced at regular intervals so that the air flowing into the temperature control unit is not reduced. ➢ Page 57, section »Function check and visual inspection«. Connect the building’s exhaust system with the temperature control unit’s exhaust air port. The cover of the supply air port must not be removed if the exhaust system provided in a building is not used.

- **NO gas warning sensor is installed in this temperature control unit!** Make sure that the installation site of the temperature control unit is sufficiently protected in the event of malfunction. This includes:
  - Installation of a building’s gas warning sensor (room monitoring).
  - Permanent ventilation of the temperature control unit and/or the installation site.
  - All-pole disconnection in the event of malfunction of the temperature control unit.

1.4.1.3 **Temperature control units with fluorinated greenhouse gases/refrigerants**


These regulations deal with all systems that contain fluorinated refrigerants. The substances dealt with in Directive (EC) No. 1005/2009 of the European Parliament and of the Council of 16 September 2009 that deplete the ozone layer are excluded (CFC/HCFC).

The directive regulates the reduction of the emission, utilization, recovery, and destruction of certain fluorinated greenhouse gases. It also regulates the identification and disposal of products and devices that contain these gases. Since July 4, 2007, responsible bodies must check their stationary refrigeration systems for leaks at regular intervals, and have any leaks eliminated immediately.

Directive (EC) No. 303/2008 contains stipulations on the training and certification of companies and personnel that are permitted to execute the specified activities.

**Obligations of the responsible bodies:**

- **Directive (EC) No. 842/2006** already imposed a number of obligations upon responsible bodies regarding certain fluorinated greenhouse gases. The new Ordinance on Fluorinated Greenhouse Gases upholds these to a large extent. Some duties are added while others are designed differently by this new ordinance. Please refer to the text of this ordinance for a complete overview of the individual responsibilities of responsible bodies.

- General obligation to reduce emissions.

- Only certified companies may maintain, repair or decommission refrigeration systems. The responsible bodies must verify that these companies are certified.
Introduction  

1.4.2 Requirements for operators

Work on the temperature control unit is reserved for appropriately qualified specialists, who have been assigned and trained by the responsible body to do so. Operators must be at least 18 years old. Under 18-year-olds may operate the temperature control unit only under the supervision of a qualified specialist. The operator is responsible vis-à-vis third-parties in the work area.

1.4.3 Obligations of the operators

Carefully read the operation manual before operating the temperature control unit. Please observe the safety instructions. When operating the temperature control unit, wear appropriate personal protective equipment (e.g. safety goggles, protective gloves, non-slip shoes).

1.5 General information

1.5.1 Description of workstation

The workstation is located at the control panel in front of the temperature control unit. The workstation is determined by the customer’s connected peripheries. Accordingly, it must be designed safe by the responsible body. The workstation design also depends on the applicable requirements of the German occupational health and safety regulations [BetrSichV] and the risk analysis for the workstation.

1.5.2 Safety devices to DIN 12876

The rating of your temperature control unit is stated on the data sheet in the appendix.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Temperature control medium</th>
<th>Technical requirements</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Non-combustible</td>
<td>Overheat protection</td>
<td>NFL</td>
</tr>
<tr>
<td>II</td>
<td>Combustible</td>
<td>Adjustable overheat protection</td>
<td>FL</td>
</tr>
<tr>
<td>III</td>
<td>Combustible</td>
<td>Adjustable overtemperature protection and additional low-level protection</td>
<td>FL</td>
</tr>
</tbody>
</table>

- Usually water; other fluids only if non-combustible even within the temperature range of an individual fault.
- The temperature control media must have a fire point of ≥ 65 °C.
- The overheat protection can, for instance, be realized using a suitable fill level sensor or a suitable temperature limiter.
- Optional at the choice of the manufacturer.

- Temperature control units with heating correspond to class number III/FL. These temperature control units are characterized by an “H” in the device name.
- Temperature control units without heating correspond to class number I/NFL.
### 1.5.2.1 Mechanical overtemperature protection

Only temperature control units with a heater are fitted with a mechanical overtemperature protection. → Page 40, section »Setting the overtemperature (OT) protection«.

### 1.5.2.2 Low level protection

**Minichiller with heater:** A mechanical float is used for level monitoring. A floating body, which is guided in a device, floats on the surface of the thermal fluid. Depending on the level of the thermal fluid, the float device signals the electronics a **state of good** (in case of sufficient filling) or a **state of bad** (in case of insufficient filling). The functionality of the float is checked at regular intervals during continuous operation.

**Unichiller with heater:** The low level protection operates via a pressure sensor in the thermal fluid circuit. The pump and the thermal fluid provide the required pressure at the pressure sensor. Air in the system (fill level too low, inadequately vented) prevents the pressure from reaching the value specified at the pressure sensor. Temperature control and circulation are interrupted.

### 1.5.3 Further protective devices

**INFORMATION**

Emergency strategy – interrupt the power grid connection!

To determine the type of switch or switch combination your temperature control unit is equipped with, please refer to the wiring diagram. → From page 69, section »Annex«.

**Temperature control units with >Mains isolator< [36] (red/yellow or gray):** Turn the >Mains isolator< [36] to the “0” position.

**Temperature control units with >Mains isolator< [36] (red/yellow) and additional >Appliance switch< [37] (gray):** Turn the >Mains isolator< [36] to the “0” position. Then turn the >Appliance switch< [37] to the “0” position!

**Temperature control units with >Mains isolator< [36] (gray) and >Emergency stop switch< [70] (red/yellow):** Press the >Emergency stop switch< [70]. Then turn the >Main switch< [36] to the “0” position!

**Temperature control units with >Mains switch< [37]:** Power supply via socket: Disconnect the temperature control unit from the power supply. Then turn the >Mains isolator< [37] to the “0” position! Power supply via hard wiring: Disconnect the power grid supply by means of the building’s circuit breaker. Then turn the >Mains isolator< [37] to the “0” position!

**Temperature control units without a switch or inside a protective housing:** Connection via socket: Disconnect the temperature control unit from the power supply. Connection via hard wiring: Disconnect the power grid supply by means of the building’s circuit breaker!

### 1.5.3.1 Power interruption

Following a power outage (or when switching on the temperature control unit), this function can be used to determine how the temperature control unit is supposed to respond.
Auto start function switched off
The temperature control is started only by manual input when the temperature control unit is turned on.

Auto start function switched on
The temperature control unit is set to the same state it was in before the power outage. For example, before the power outage: Temperature control is off; after power outage: Temperature control is off. If temperature control was active during a power outage, the process will automatically continue after the power outage.

→ Page 39, section «Changing the Auto-Start function».

1.6 Exemplary illustrations of the cooling variants

Example: Air and water cooling

Air cooling: Air inlet
Fresh air supply from below

Fresh air supply from below

Fresh air supply from the front

Water cooling: Water connection

Cooling water supply

Cooling water return
1.6.1 Consequence of inadequate energy dissipation

**Room air/cooling water**
Consequences of, for instance, contamination of the liquefier fins, inadequate clearance between temperature control unit to wall/bath wall, room air/cooling water too warm, cooling water differential pressure too low, suction strainer contamination: The refrigerant in the coolant circuit can no longer fully discharge the admitted energy to the room air/cooling water. Thus there is not sufficient liquefied refrigerant available, the condensation temperature and the energy consumption to rise.

**Coolant circuit**
Consequences of inadequate refrigerant quantity/rising condensation temperature: Not all the cooling capacity from the coolant circuit is available at the evaporator. This means reduced energy transmission from the thermal fluid circuit.

**Thermal fluid circuit**
Consequence of inadequate energy dissipation from the thermal fluid: The thermal fluid can only dissipate the energy from your application to a limited extent.

**Application**
Consequences of inadequate energy dissipation from the application: The energy created (exothermic) in the application can no longer be fully dissipated.

**Temperature control unit**
An electronically-controlled expansion valve is used in the temperature control unit to optimize the power adjustment. The expansion valve always provisions the maximum possible cooling capacity within the permissible ambient temperature range. The temperature control unit switches off when the upper range is reached (maximum permissible ambient temperature).
2

Commissioning

2.1

In-plant transport

**WARNING**

Temperature control unit is not transported / moved according to the specifications in this operation manual

**DEATH OR SERIOUS INJURY DUE TO CRUSHING**

➢ Always transport / move the temperature control unit according to the specifications in this operation manual.
➢ Wear personal protective equipment during transport.
➢ Always work with the specified number of persons when moving the temperature control unit on casters (if any).
➢ If the temperature control unit is equipped with casters and parking brakes: 2 parking brakes are always freely accessible when moving the temperature control unit. Activate the 2 parking brakes in an emergency! If only one parking brake is activated on the casters in an emergency: The temperature control unit is not stopped but rotates around the axis of the caster with the activated parking brake.

**NOTE**

Temperature control unit transported in a horizontal position

**DAMAGE TO THE COMPRESSOR**

➢ Only transport the temperature control unit in an upright position.

**NOTE**

Filled temperature control unit is transported

**MATERIAL DAMAGE DUE TO OVERFLOWING THERMAL FLUID**

➢ Only transport an emptied temperature control unit.

- If available, use the lugs on the top side of the temperature control unit for transportation.
- Use an industrial truck for transport.
- The casters (if present) on the temperature control unit are not suitable for transport. The casters are symmetrically loaded with 25% of the total mass of the temperature control unit.
- Remove the packing material (e.g. the palette) only at the place of installation.
- Protect the temperature control unit from transport damage.
- Do not transport the temperature control unit alone and without aids.
- Check the load bearing capacity of the transportation route and the place of installation.
- The parking brakes at the casters (if any) must be activated and/or the leveling feet (if any) must be unscrewed/activated before the temperature control unit is put into operation. → Page 29, section »Unscrewing/activating the leveling feet (if any)«.

2.1.1

Lifting and transporting the temperature control unit

2.1.1.1

Temperature control unit with lifting eyes

**NOTE**

The temperature control unit is raised at the lifting eyes without load handling attachments

**DAMAGE TO THE TEMPERATURE CONTROL UNIT**

➢ Always use load handling attachments when lifting and transporting the temperature control unit.
➢ The lifting eyes are only designed for a load without inclination (0°).
➢ The load handling attachment used must be adequately dimensioned. Take the dimensions and weight of the temperature control unit into account.

Example: lifting eyes (round, angular, and recessed (left to right))
• Do not lift and transport the temperature control unit at the lifting eyes alone and without aids.
• Lift and transport the temperature control unit at the lifting eyes only with a crane or an industrial truck.
• The crane or industrial truck must have a lifting force equal to or greater than the weight of the temperature control unit. See the data sheet for the weight of the temperature control unit. → From page 69, section »Annex«.
• If the leveling feet have been removed for shipping: Only lower the temperature control unit when all leveling feet have been installed. → Page 23, section »Mounting/removing leveling feet«.

2.1.1.2 Temperature control unit without lifting eyes

Example: Supporting points for forklift arms for free-standing models from a certain overall size. For the exact position please refer to the wiring diagram in the annex.

• Do not lift and transport the temperature control unit alone and without aids.
• Lift and transport the temperature control unit only with an industrial truck.
• The industrial truck must have a lifting force equal to or greater than the weight of the temperature control unit. See the data sheet for the weight of the temperature control unit. → From page 69, section »Annex«.
• If the leveling feet have been removed for shipping: Only lower the temperature control unit when all leveling feet have been installed. → Page 23, section »Mounting/removing leveling feet«.

2.1.2 Mounting/removing leveling feet

Only valid if the leveling feet have been removed for shipping.

[WARNING]
The temperature control unit is not secured against slipping and/or lowering
DEATH OR SERIOUS INJURY DUE TO CRUSHING

➢ Secure the temperature control unit against slipping and/or lowering before the leveling feet are mounted.
➢ Do not stand or lie under the temperature control unit for mounting.

Example: mounting the leveling feet

Example: Supporting points for forklift arms for free-standing models from a certain overall size. For the exact position please refer to the wiring diagram in the annex.

The leveling feet were removed for shipping the temperature control unit. Before placing / positioning the temperature control unit all leveling feet must be mounted. If the temperature control unit is re-shipped: Remove all leveling feet before packaging.
2.1.3 Positioning the temperature control unit

2.1.3.1 Temperature control unit with casters

- Do not use the casters for the transportation to the place of installation. → Page 22, section »Lifting and transporting the temperature control unit«.
- Use the casters only for positioning at the place of installation.
- Only ever move the temperature control unit on the casters if the surface is level, without gradient, non-slip and stable.
- Do not move the temperature control unit alone.
- At least 2 persons are required to move the temperature control unit on casters. At least 5 persons are required to move the temperature control unit on the casters if the total weight of the temperature control unit is over 1.5 tons.
- The parking brakes must be activated at the casters and/or the feet (if present) must be unscrewed/activated before the temperature control unit is put into operation. → Page 29, section »Unscrewing/activating the leveling feet (if any)«.

2.1.3.2 Temperature control unit without casters

- An industrial truck must be used for positioning the temperature control unit.
- Do not move the temperature control unit alone.
- At least 2 persons are required to move the temperature control unit.
- The industrial truck must have a lifting force equal to or greater than the weight of the temperature control unit. See the data sheet for the weight of the temperature control unit. → From page 69, section »Annex«.
- The leveling feet (if present) must be unscrewed/activated before the temperature control unit is put into operation. → Page 29, section »Unscrewing/activating the leveling feet (if any)«.

2.2 Unpacking

**WARNING**

Starting up a damaged temperature control unit

DANGER TO LIFE FROM ELECTRIC SHOCK

- Do not operate a damaged temperature control unit.
- Please contact Customer Support. → Page 68, section »Contact data«.

**PROCEDURE**

- Check for damage to the packaging. Damage can indicate material damage to the temperature control unit.
- Check for any transport damage when unpacking the temperature control unit.
- Always contact your forwarding agent regarding the settlement of claims.
- Observe the proper disposal of packaging material. → Page 15, section »Proper disposal of resources and consumables«.

2.3 Ambient conditions

**CAUTION**

Unsuitable ambient conditions / unsuitable installation

SERIOUS INJURY DUE TO CRUSHING

- Comply with all requirements! → Page 24, section »Ambient conditions« and → Page 26, section »Installation conditions«.
Make sure there is adequate fresh air available at the site for the circulation pump and the compressors. The warm exhaust air must be able to escape upwards unhindered.

**Free-standing models**

For the connection data, see the data sheet. → From page 69, section »Annex«.

Use of the temperature control unit is permitted only under normal ambient conditions in accordance with the currently valid DIN EN 61010-1.

- Use only indoors. The illuminance must be at least 300 lx.
- Installation altitude up to 2,000 meters above sea level.
- Maintain wall and ceiling clearance for adequate air exchange (dissipation of waste heat, supply of fresh air for the temperature control unit and work area). Ensure adequate floor clearance for air-cooled temperature control units. Do not operate this temperature control unit from within the box or with an inadequately dimensioned bath. This inhibits the air exchange.
- Ambient temperature values are provided on the technical data sheet; to ensure trouble-free operation, compliance with the ambient conditions is mandatory.
- Relative humidity max 80% to 32 °C and 40 °C decreasing linearly to 50%.
- Short distance to supply connections.
- The temperature control unit must not be installed so as to hinder or even prevent access to the disconnecting device (to the power supply).
- For the magnitude of the mains voltage fluctuations, refer to the datasheet. → From page 69, section »Annex«.
- Transient surges, as would normally occur in the power supply system.
- Installation Class 3
- Applicable degree of soiling: 2.
- Surge category II.

Please note: → Page 20, section »Exemplary illustrations of the cooling variants«.

### Wall clearances

<table>
<thead>
<tr>
<th>Distance in cm</th>
<th>Air cooling</th>
<th>Water cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>[B] Left</td>
<td>min. 20</td>
<td>min. 10</td>
</tr>
<tr>
<td>[C] Right</td>
<td>min. 20</td>
<td>min. 10</td>
</tr>
<tr>
<td>[D] Front</td>
<td>min. 20</td>
<td>min. 10</td>
</tr>
<tr>
<td>[E] Rear</td>
<td>min. 20</td>
<td>min. 20</td>
</tr>
</tbody>
</table>

[A1] Top: Air outlet on top of unit: free standing

[A2] Top: can be located under a bench

---

**Please note:** → Page 20, section »Exemplary illustrations of the cooling variants«.
### EMC-specific notes

#### Connecting cables in general

Prerequisites for a failure-free operation of the temperature control units incl. their connections with external applications: Installation and wiring must be carried out professionally. Related topics: "Electrical safety" and "EMC-compliant wiring".

#### Cable lengths

For flexible/fixed cable routing of more than 3 meters, the following must amongst other things be observed:
- Equipotential bonding, grounding (see also technical data sheet "Electromagnetic compatibility EMC")
- Compliance with "external" and/or "internal" lightning/overvoltage protection.
- Design protection measures, professional cable selection (UV resistance, steel pipe protection, etc.)

**Attention:**

The operating company is responsible for compliance with national/international directives and laws. This also includes the testing of the installation/wiring required by law or standards.

This device is suitable for operation in "industrial electromagnetic environments". It meets the “immunity requirements” of the currently applicable EN61326-1, which are required for this environment.

It also meets the “interference emission requirements” for this environment. It is a Group 1 and Class A device according to the currently applicable EN55011.

Group 1 specifies that high frequency (HF) is only used for the function of the device. Class A defines the interference emission limits to be observed.

### Installation conditions

#### WARNING

Temperature control unit is connected to the power supply line

DEATH FROM ELECTRICAL SHOCK BY DAMAGE TO THE POWER CABLE.

- Do not put temperature control unit on power cable.

#### CAUTION

Operating the temperature control unit fitted with casters without brakes activated

CRUSHING OF LIMBS

- Activate brakes on the casters.
• Allow the temperature control unit to acclimate for about 2 hours when changing from a cold to a warm environment (or vice versa). Do not turn on the temperature control unit before!
• Install upright, stable and tilt-resistant.
• Use a non-combustible, sealed foundation.
• Keep the environment clean: Prevent slip and trip hazards.
• Wheels, if installed, must be locked after installation!
• Spilled/leaked thermal fluid must be removed immediately. Observe the proper disposal of thermal fluid and aids. ➔ Page 15, section »Proper disposal of resources and consumables«.
• Observe the floor load bearing capacity for large units.
• Observe the ambient conditions.

2.5 Recommended temperature control and cooling water hoses

<table>
<thead>
<tr>
<th>Use of unsuitable/defective hoses and/or hose connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>INJURIES</td>
</tr>
<tr>
<td>➢ Thermal fluid</td>
</tr>
<tr>
<td>➢ Use appropriate hoses and/or hose connections.</td>
</tr>
<tr>
<td>➢ Check periodically for leaks and the quality of the hose and hose connections and take suitable measures (replace) as required.</td>
</tr>
<tr>
<td>➢ Isolate and protect temperature control hoses against contact/mechanical load.</td>
</tr>
<tr>
<td>➢ Cooling water</td>
</tr>
<tr>
<td>➢ Reinforced hoses must be used to satisfy tougher safety requirements.</td>
</tr>
<tr>
<td>➢ Shut off the cooling water supply to the temperature control unit even for shorter downtimes (e.g. overnight).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hot or cold thermal fluid and surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURNS TO LIMBS</td>
</tr>
<tr>
<td>➢ Avoid direct contact with the thermal fluids or the surfaces.</td>
</tr>
<tr>
<td>➢ Wear your personnel protective equipment (e.g. temperature-resistant safety gloves, safety goggles, safety footwear).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncontrolled formation of ice at the connections and hoses of the thermal fluid circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIP AND TRIP HAZARD</td>
</tr>
<tr>
<td>➢ If the temperature is controlled in the minus range, ice forms at the hoses and connections of the thermal fluid circuit. This occurs by condensing and freezing of atmospheric humidity.</td>
</tr>
<tr>
<td>➢ Check the strength of the ice formation. If too much ice is formed, this increases the risk of the temperature control unit tipping over. Secure the temperature control unit against tipping if this is the case.</td>
</tr>
<tr>
<td>➢ Check the ground below the ice formation for condensation water. Collect the condensation water with a suitable container or thoroughly remove it at regular intervals. You thus prevent the danger of slipping caused by condensation.</td>
</tr>
</tbody>
</table>

To connect applications, use only temperature control hoses that are compatible with the thermal fluid used. When selecting temperature control hoses, also pay attention to the temperature range in which the hoses are to be used.

• We recommend you use only temperature-insulated temperature control hoses with your temperature control unit. The responsible body is responsible for the insulation of connection valves.
• We exclusively recommend reinforced hoses for connecting to the cooling water supply. Cooling water and insulated temperature control hoses can be found in the Huber catalogue under Accessories.

2.6 Wrench sizes and torques

Note the wrench sizes that result for the pump connection on the temperature control unit. The following table lists the pump connections and the resulting wrench sizes, and torque values. A leak test must always be performed, and the connections tightened if necessary. The values of the maximum torque (see table) must not be exceeded.
### Connection

<table>
<thead>
<tr>
<th>Connection</th>
<th>Size</th>
<th>Recommended Torques in Nm</th>
<th>Maximum Torques in Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16x1</td>
<td>19</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>M24x1.5</td>
<td>27</td>
<td>47</td>
<td>56</td>
</tr>
<tr>
<td>M30x1.5</td>
<td>36</td>
<td>79</td>
<td>93</td>
</tr>
<tr>
<td>M38x1.5</td>
<td>46</td>
<td>130</td>
<td>153</td>
</tr>
</tbody>
</table>

G-thread (flat-sealing)

Adapt the torque to the material of the flat seal used. First hand-tighten the temperature control hose. When using adapters, do not overtighten the G-thread on the pump connection when connecting a temperature control hose. When connecting a temperature control hose to the adapter piece, secure the G thread against overwinding.

### 2.7 Temperature control units with water cooling

**WARNING**
Open electrical wires below the temperature control unit if the temperature falls below the dew point.

**DEATH FROM ELECTRICAL SHOCK BY WATER ENTRY INTO THE ELECTRIC LINES.**

- A temperature below the dew point may result in condensation in the temperature control unit and at the cooling water connections. The condensation is caused by high humidity at the cooling water-bearing components. The condensation exists the temperature control unit at the bottom.
- Electrical lines directly below the temperature control unit must be protected against liquid ingress.

**CAUTION**
Use of unsuitable/defective hoses and/or hose connections

**INJURIES**

- Thermal fluid
- Use appropriate hoses and/or hose connections.
- Check periodically for leaks and the quality of the hose and hose connections and take suitable measures (replace) as required.
- Isolate and protect temperature control hoses against contact/mechanical load.
- Cooling water
- Reinforced hoses must be used to satisfy tougher safety requirements.
- Shut off the cooling water supply to the temperature control unit even for shorter downtimes (e.g. overnight).

**NOTE**

No protection against corrosion

**DAMAGE TO THE TEMPERATURE CONTROL UNIT**

- The addition of anti-corrosion agents is mandatory if salts (chlorides, bromide) have been added to the water circuit.
- Ensure that the materials used in the cooling water circuit are resistant with respect to the cooling water. For information on materials used see the data sheet. → From page 69, section »Annex«.
- Take suitable measures to maintain the warranty conditions.
- For information about water quality, see www.huber-online.com.

**NOTE**

Usage of un-filtered river/sea or ocean water as cooling water

**DAMAGE TO THE TEMPERATURE CONTROL UNIT**

- Un-filtered river or sea water is not suitable for use as cooling water due to its contaminants.
- Use drinking water or filtered river or sea water for cooling.
- Sea water must not be used for water cooling.
- For information about water quality, see www.huber-online.com.

**INFORMATION**

To minimize cooling water consumption, Huber temperature control units with water cooling are equipped with a cooling water regulator. It limits the flow of cooling water to the amount required by the current load situation. If only a low cooling capacity is requested, only a small amount of cooling water is consumed. It cannot be ruled out that cooling water flows when the machine is switched off. Shut off the cooling water supply to the temperature control unit even for shorter downtimes (e.g. overnight).
Preparing the temperature control unit with water cooling:

**INFORMATION**

In the event of outdoor installation, the responsible body must ensure that the cooling water supply and return lines are laid frost-protected. The cooling water temperature must not fall below 3°C. At ambient temperatures below 3°C, the cooling water supply must be heated.

The minimum pressure differential in the cooling water circuit and the recommended cooling water inlet temperature can be found on the data sheet. → From page 69, section »Annex«.

Observe the wiring diagram. → From page 69, section »Annex«.

**PROCEDURE**

- Close (if fitted) the >Cooling water drain< [15].
- Connect the >Cooling water outlet< [14] to the water return flow. A seal must be used.
- Insert the suction strainer (dirt trap) into the >Cooling water return< [13].
- Connect the >Cooling water inlet< [13] to the water supply.

**NOTE**

Leaking cooling water connections

**DAMAGE BY ROOM FLOODING**

- Slowly open the building-side shut-off valves of the cooling water supply and return line.
- If water leaks from the cooling water connections: shut off the cooling water supply and return line immediately.
- Provide leakproof cooling water connections.

- Open the shut-off valves in the water line on the temperature control unit (if present) and on the building side.
- Check the connections for leaks.

**2.8 Preparations for operation**

**2.8.1 Unscrewing/activating the leveling feet (if any)**

**WARNING**

The leveling feet are not unscrewed/activated before switching on the temperature control unit

**DEATH OR SERIOUS INJURY DUE TO CRUSHING**

- The parking brakes must be activated at the casters (if any) and/or the leveling feet must be unscrewed/activated before the temperature control unit is put into operation.
- The temperature control unit may move if the parking brakes of the casters (if any) are not activated and/or the leveling feet are not unscrewed/activated.
Always unscrew/activate the leveling feet before switching on the temperature control unit. Uneven floors can be compensated by adjusting these leveling feet.

**PROCEDURE**

- Verify that the parking brakes of the casters (if any) have been activated.
- Unscrew the leveling feet.
- Compensate uneven floors by adjusting these leveling feet, if necessary. Use a spirit level to horizontally align the temperature control unit.
- Tighten the lock screws on the leveling feet after aligning the temperature control unit. This prevents the leveling feet from changing their height during operation.

### 2.8.2 Opening/closing the bypass valve

Some temperature control units are fitted with an adjustable bypass to protect fragile applications (e.g. a glass apparatus). To find out whether your temperature control unit is equipped with an adjustable bypass, refer to the “Wiring diagram”. → From page 69, section »Annex«.

The >Bypass valve< [62] is located on top of the temperature control unit. The set pressure is displayed on the display. → Page 35, section »Display«. The >Bypass valve< [62] must be fully open before the circulation starts:

- at the initial filling of the machine;
- when switching to another thermal fluid;
- when switching to another application.

### INFORMATION

**Opening the bypass valve:**

Open the valve by turning it counterclockwise (turn 90° left as far as it will go).

**Closing the bypass valve:**

Close the valve by turning it clockwise (turn 90° right as far as it will go).

### PROCEDURE

- Check whether the >Bypass valve< [62] is open.
- Open the >Bypass valve< [62] by turning it counterclockwise (turn 90° left as far as it will go).

### 2.8.3 Enable / Disable silent operation (optional)

Enabling silent operation on the temperature control unit reduces the noise level by decreasing the pump capacity. For the exact position of the switch >Change pump speed< [114] please refer to the “Wiring diagram”. → From page 69, section »Annex«.

Enable silent operation

Silent operation disabled

Silent operation enabled
PROCEDURE

- To enable silent operation, press the switch >Change pump speed< on the temperature control unit. The pumping capacity and the noise level are reduced.
- To disable silent operation, press the switch >Change pump speed< on the temperature control unit. The pumping capacity and the noise level are increased.
- Select the silent operation mode by enabling and disabling.

2.8.4 Installing collecting container

PROCEDURE

- Install a suitable hose at the >overflow< on the temperature control unit (if present). The hose must be compatible with the thermal fluid and the temperature.
- Put the other end of the hose in a suitable collecting container.

2.8.5 Connecting the functional earth

PROCEDURE

- If required, connect the temperature control unit’s >Functional ground terminal< to the building’s grounding point. Use a ground strap for this purpose. For the exact position and thread size please refer to the wiring diagram. From page 69, section »Annex«.

2.9 Connecting externally closed application

Observe the wiring diagram. From page 69, section »Annex«.

2.9.1 Connecting an externally closed application

**NOTE**

Overpressure in the application (e.g. > 0.5 bar (g) with glass apparatus)

MATERIAL DAMAGE TO THE APPLICATION

- Provide an overpressure protective device to prevent damage to the application.
- Do not install valves/quick-release couplings in the feed/discharge lines from the temperature control unit to the application and from the application to the temperature control unit.
- If valves/quick-release couplings are required:
  - Install burst disks on the application itself (at the feed and discharge lines).
  - Install a bypass upstream of the valves/quick-release couplings for the application.
- Matching accessories (e.g. bypasses to reduce pressure) can be found in the Huber catalog.

To enable your application to be operated correctly and eliminate air bubbles from the system, you must ensure that the >Circulation flow< connection from the temperature control unit is attached to the lower connection point of the application and the >Circulation return< into the temperature control unit is attached to the higher connection point of the application.

PROCEDURE

- Remove the screw plugs from the >Circulation flow< and >Circulation return< connections.
- Then connect your application to the temperature control unit using suitable thermal fluid hoses. Observe the table with the wrench sizes. Page 27, section »Wrench sizes and torques«.
- Check the connections for leaks.
2.10 Connecting to the power supply

**INFORMATION**

Based on local circumstances, it may be that you need to use an alternative power cable instead of the supplied original power cable. Do not use a power cable that is longer than 3 m to be able to disconnect the temperature control unit at any time from the mains. Have the mains cable only replaced by a qualified electrician.

### 2.10.1 Connection using socket with protective earth (PE)

**DANGER**

Connecting to a power socket without protective earth (PE)

MORTAL DANGER FROM ELECTRIC SHOCK

- Always connect the temperature control unit to safety sockets (PE).

**DANGER**

Damaged power cable/power cable connection

MORTAL DANGER FROM ELECTRIC SHOCK

- Do not start up the temperature control unit.
- Isolate the temperature control unit from the power supply.
- Have the power supply cable/power supply connection replaced and inspected by an electrician.
- Do not use a power cable that is longer than 3 m.

**NOTE**

Incorrect power supply connection

DAMAGE TO THE TEMPERATURE CONTROL UNIT

- Your building's existing power supply voltage and frequency must match the data provided on the rating plate of the temperature control unit.

**INFORMATION**

In case of uncertainties about an existing protective earth (PE), have the connection inspected by an electrician.

### 2.10.2 Connection via hard wiring

**DANGER**

Connection/adjustment to the power supply not carried out by an electrician

MORTAL DANGER FROM ELECTRIC SHOCK

- Have the connection/adjustment to the power supply carried out by an electrician.

**DANGER**

Damaged power cable/power cable connection

MORTAL DANGER FROM ELECTRIC SHOCK

- Do not start up the temperature control unit.
- Isolate the temperature control unit from the power supply.
- Have the power supply cable/power supply connection replaced and inspected by an electrician.
- Do not use a power cable that is longer than 3 m.

**NOTE**

Incorrect power supply connection

DAMAGE TO THE TEMPERATURE CONTROL UNIT

- Your building's existing power supply voltage and frequency must match the data provided on the rating plate of the temperature control unit.
3 Function description

3.1 Function description of the temperature control unit

3.1.1 General functions
Circulating coolers are temperature control units, which are mainly used to dissipate process heat as well as a cost effective alternative to cooling water (drinking water).

Due to powerful refrigeration engineering, short cooling rates can be achieved.

Temperature control units with “P” in model name: This temperature control unit is particularly suitable for applications requiring high pressure drops.

3.1.2 Other functions
A pump ensures the thermal fluid is circulated. The following data are displayed on the display with OLED technology depending on the model and options: Temperature of the internal and external temperature sensor, setpoint, pressure and flow rate. Use the membrane keyboard to enter the controller settings.

The temperature control unit can easily be integrated in many laboratory automation systems using the standardly existing RS232 and USB interfaces on the controller and the optional ECS and POKO interfaces.

An external Pt100 sensor can be connected via the optional Pt100 process display sensor port. The temperature measured is displayed on the display.

Temperature control units with a heater have an overtemperature protection to DIN EN 61010-2-010 that is independent of the control circuit.

3.2 Information on the thermal fluids

Non-compliance with the safety data sheet for the thermal fluid to be used

<table>
<thead>
<tr>
<th>INJURIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury to the eyes, skin, respiratory tract.</td>
</tr>
<tr>
<td>The safety data sheet for the thermal fluid to be used must be read prior to using it and its content must be respected.</td>
</tr>
<tr>
<td>Observe the local regulations/work instructions.</td>
</tr>
<tr>
<td>Wear your personal protective equipment (e.g. temperature-resistant safety gloves, safety goggles, safety footwear).</td>
</tr>
<tr>
<td>Danger of slipping because floor and work area are contaminated. Clean the workplace; observe the proper disposal of thermal fluid and aids. → Page 15, section »Proper disposal of resources and consumables«.</td>
</tr>
</tbody>
</table>

Non-compliance with the compatibility between the thermal fluid and your temperature control unit

<table>
<thead>
<tr>
<th>MATERIAL DAMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observe the classification of your temperature control unit according to DIN 12876.</td>
</tr>
<tr>
<td>Ensure the following materials are resistant with respect to the thermal fluid: Stainless steel 1.4301/ 1.4401 (V2A), copper, nickel, FKM, red bronze/brass, silver solder and plastic.</td>
</tr>
<tr>
<td>The maximum viscosity of the thermal fluid must not exceed 50 mm²/s at the lowest working temperature!</td>
</tr>
<tr>
<td>The maximum density of the thermal fluid may not exceed 1 kg/dm³!</td>
</tr>
</tbody>
</table>
### 3.3 To be noted when planning the test

#### INFORMATION

Observe the intended operation. → Page 13, section »Proper operation«.

The focus is on your application. Bear in mind that system performance is influenced by heat transfer, temperature, thermal fluid viscosity, volume flow, and flow speed.

- Make sure the electrical connection is adequately dimensioned.
- The installation location of the temperature control unit should be selected so as to ensure adequate fresh air, even with water-cooled chillers.
- The maximum flow pressure of a temperature control unit must be taken into account in case of pressure-sensitive applications, such as glass reactors.
- Cross-section reduction or shut-off in the thermal fluid circuit must be avoided. Take appropriate measures to limit the pressure in the system. Observe the data sheet of your glass apparatus and the data sheet of your temperature control unit. → From page 69, section »Annex«.
- Check whether it is necessary to use an external bypass for temperature control units without pressure limitation.
- In order to prevent the risk of overpressure in the system, the thermal fluid must always be adjusted to room temperature before switching off. This will prevent damage to the temperature control unit or the application. Any isolating valves must remain open (pressure equalization).
- Select the thermal fluid to be used in such a way that it not only permits the minimum and maximum working temperature but is also suitable with regard to fire point, boiling point, and viscosity. In addition, the thermal fluid must be compatible with all the materials in your system.
- Avoid bending the temperature control and cooling water hoses (if required). Use suitable angle pieces and lay the hose connections with a large radius. Take the minimum bending radius from the data sheet of the temperature control hoses used.
- The selected hose connections must be able to withstand the thermal fluid, the working temperatures and the admissible maximum pressure.
- Check the hoses at regular intervals for any material fatigue (e.g. cracks, leaks).
- Keep the temperature control hoses as short as possible
  - The inside diameters of the temperature control hoses must correspond at least to the pump connections. Select bigger inside diameters for longer line lengths to compensate for pressure loss in the piping.
  - The viscosity of the thermal fluid determines the pressure drop and influences the temperature control result, especially at low working temperatures.
  - Too small connectors and couplers and valves can generate significant flow resistance. Your application will therefore be slower to reach its design temperature.
- Basically, you should only use the thermal fluid recommended by the manufacturer and only within the usable temperature and pressure range.
• The application should be roughly at the same height of or below the temperature control unit if the temperature control is close to the boiling temperature of the thermal fluid.

• Fill the temperature control unit slowly, carefully and evenly. Wear the necessary personal protective equipment, such as goggles, heat-proof and chemically resistant gloves, etc.

• The temperature control circuit must be vented after filling and setting all required parameters. This is required to ensure trouble-free operation of the temperature control unit and hence your application.

For water-cooled temperature control units, please take the cooling water temperature necessary for perfect operation and the required differential pressure from the data sheet. → From page 69, section »Annex«.

3.4 Display and control instruments

![Diagram of OLÉ control panel]

3.4.1 Display

Home screen:
Temperature control is active

- Current internal temperature
- Temperature limit for setpoint
- Flow sensor / pressure sensor (depending on model)
- Heating / Cooling / Pump
- Set setpoint

Home screen:
Temperature control is inactive or an error message is displayed

- Current internal temperature
- Temperature control off
- Set setpoint

Note text or error message

Display panel:
- Minichiller® OLÉ, Unichiller® OLÉ

[Diagram of OLÉ control panel]

Key labels:
- [A] Display
- [B] Arrow keys
- [C] SET key
- [D] ESC key
- [E] Start/Stop key

From page 69, section »Annex«.
### Home screen: Explanation of the display

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature limit for setpoint</td>
<td>Display of the setpoint limit. You can set the setpoint only within this range. You can change this limit in the menu item “Protection Options” and then “Setpoint Minimum” and “Setpoint Maximum”. Do take the thermal fluid used and the material to be tempered into account when changing these settings. → Page 38, section »Menu function«.</td>
</tr>
<tr>
<td>Flow sensor / pressure sensor (optional, depending on model)</td>
<td>Display for the measured values of the built-in flow or pressure sensor. This feature is optional depending on the model and is not available in KISS controllers and other temperature control units. Use the menu item “Sensor Configuration” under “Flow Sensor / Pressure Sensor Display” to change the display or to turn it on and off. → Page 38, section »Menu function«.</td>
</tr>
<tr>
<td>Heating</td>
<td>This symbol is displayed when the temperature control unit heats the thermal fluid. (Only for temperature control units with heating)</td>
</tr>
<tr>
<td>Cooling system</td>
<td>This symbol is displayed when the temperature control unit cools down the thermal fluid.</td>
</tr>
<tr>
<td>Pump</td>
<td>The symbol is displayed when the pump in the temperature control unit runs.</td>
</tr>
<tr>
<td>Current internal temperature</td>
<td>Display of the current thermal fluid temperature. The temperature is measured and controlled by the internal temperature sensor.</td>
</tr>
<tr>
<td>Pt100 sensor (optional)</td>
<td>Displays the measured value of the external Pt100 process display sensor. This display requires that: 1) the temperature control unit is equipped with a Pt100 port, 2) a Pt100 process display sensor has been attached, 3) the Pt100 process display sensor was placed in the application. You can turn on and off the display in the menu item “Sensor Configuration” under “Display external Pt100 sensor” only if the corresponding interface has been installed. → Page 38, section »Menu function«.</td>
</tr>
<tr>
<td>Set setpoint</td>
<td>Displays the setpoint set.</td>
</tr>
<tr>
<td>Info text or error message</td>
<td>Displays an info text or error message.</td>
</tr>
</tbody>
</table>

### 3.4.2 Control instruments

#### 3.4.2.1 Arrow keys

Use the ↑Arrow keys↓ [B] to enter values (+ or -), to select a menu item (arrow left) or (arrow right) or to select a different menu item (up or down). Pressing an arrow key for an extended period changes a value faster. Pressing both ↑Arrow keys↓ [B] simultaneously calls up the main menu.

#### 3.4.2.2 SET key

Pressing the ↑SET key↓ [C] on the home screen switches directly to the screen where you can enter the setpoint temperature. It allows you to quickly modify the setpoint temperature. The ↑SET key↓ [C] is also used to get to a selected menu item or to confirm changes.
3.4.2.3 ESC key

Pressing the *ESC key* [D] cancels changes / entries. The display changes to the previous screen without saving a change / entry. Pressing the *ESC key* [D] brings you back to the previous screen, all the way to the home screen. Press the *ESC key* [D] to acknowledged the alarm sound of an error.

3.4.2.4 Start/Stop key

Start or stop the thermoregulation by pressing the *Start/Stop button* [E].

3.4.3 Adjusting settings

There are two ways to adjust settings:

**Numerical settings:**
Use the *Arrow keys* [B] (+) or (-)) and confirm an entry by pressing the *SET key* [C]. Pressing an arrow key for an extended period changes a value faster.

**Text selection:**
Select the text via the *Arrow keys* [B] (up) or (down)) and confirm your entry by pressing the *SET key* [C].
3.5 Menu function

Pressing both >Arrow keys< [B] simultaneously calls up the main menu. Some menu items cannot be selected depending on the configuration of the temperature control unit.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>KISS</th>
<th>OLÉ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint 1</td>
<td>Sets the setpoint. Use the &gt;Arrow keys&lt; [B] to change the setpoint.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adjusting brightness</td>
<td>Adjusting the brightness of the OLED display. Use the &gt;Arrow keys&lt; [B] to change the brightness.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sensor configuration</td>
<td>This menu item makes available: 1) Adjustment of the internal sensor (input options: Offset (K)) 2) Adjustment of the external sensor (input options: Offset (K)) 3) Temperature unit (choose between “Celsius” and “Fahrenheit”) 4) Mode (choose between “Internal temperature control”, “Venting” and “Circulation” 5) Display of external Pt100 sensor – (activating the display of an external Pt100 process display sensor) 6) Flow sensor / pressure sensor display – (activating the display of the optional flow sensor / pressure sensor)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Interfaces</td>
<td>This menu item makes available: 1) RS232 1 (setting of “Baud rate” and “Mode” (HuberBus)) 2) RS232 2 (setting of “Baud rate” and “Mode” (HuberBus)) 3) USB device (setting of “Baud rate” and “Mode” (HuberBus)) Only Huber service technicians may use the “STBus” mode. 4) Floating contact (selection of “Off”, “Alarm” and “Unipump/PCS”) 5) External control signal (selection between “Off”, “Setpoint2” and “Standby”)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protection Options</td>
<td>This menu item makes available: 1) Setpoint2 (to input the second setpoint) 2) Setpoint minimum (to input the lower limit of the adjustable setpoint) 3) Setpoint maximum (to input the upper limit of the adjustable setpoint) 4) Power failure automatic (select between “Off” and “Automatic”)</td>
<td>–</td>
<td>O</td>
</tr>
<tr>
<td>System</td>
<td>This menu item makes available: 1) Heating output (only with temperature control units; setting in %) 2) Select language (choose between “English” and “German”) 3) Cooling bath (select between “Without cooling bath” (Off), “With cooling bath and common power supply” (On) and “With cooling bath and separate power supply” (On)) 4) System information (display different serial numbers (Serial Number) and version statuses) 5) Service menu (only for Huber service technicians. This submenu is password protected) 6) Factory settings (choose between “Continue” and “Cancel”)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X = standard, O = optional, M = model-dependent, – = not possible
Function description

Chapter 3 OPERATION MANUAL

3.6 Functional examples

3.6.1 Selecting a language

PROCEDURE

➢ Press both >Arrow keys< [B] to invoke the main menu.
➢ Use the >Arrow keys< [B] to select the menu item “System”.
➢ Press the >SET key< [C] to confirm your selection.
➢ Use the >Arrow keys< [B] to select the submenu “Select Language”.
➢ Press the >SET key< [C] to confirm your selection.
➢ Use the >Arrow keys< [B] to select the desired language.
➢ Press the >SET key< [C] to confirm your selection.
➢ Press the >ESC key< [D] twice to return to the home screen.

3.6.2 Setting the setpoint

PROCEDURE

Using the home screen to set the setpoint

➢ Press the >SET key< [C].
➢ Use the >Arrow keys< [B] (+) or (-)) to set the new setpoint.
   The longer you keep an arrow key pressed the faster the value changes.
➢ Press the >SET key< [C] to confirm your input.

3.6.3 Changing the Auto-Start function

Following a power outage (or when switching on the temperature control unit), this function can be
used to determine how the temperature control unit is supposed to respond.

Auto-Start function is turned off
The temperature control is started only by manual input when the temperature control unit is
turned on.

Auto-Start function is turned on
The temperature control unit is set to the same state it was in before the power outage. For exam-
ple, before the power outage: Thermoregulation is off; after power outage: Thermoregulation is off.
If temperature control is active during a power outage, the process will automatically continue after
the power outage.

PROCEDURE

➢ Press both >Arrow keys< [B] to invoke the main menu.
➢ Use the >Arrow keys< [B] to select the menu item “Protection Options”.
➢ Press the >SET key< [C] to confirm your selection.
➢ Use the >Arrow keys< [B] to select the submenu “Power Failure Automatic”.
➢ Press the >SET key< [C] to confirm your selection.
➢ Use the >Arrow keys< [B] to select the desired setting.
➢ Press the >SET key< [C] to confirm your selection.
➢ Press the >ESC key< [D] twice to return to the home screen.
4 Setup mode

4.1 Setup mode

Moving the temperature control unit during operation

SERIOUS BURNS/FREEZING OF THE HOUSING PARTS/ESCAPING THERMAL FLUID

- Do not move temperature control units that are in operation.

4.1.1 Turning on the temperature control unit

PROCEDURE

- The temperature control unit must be filled with thermal fluid before you turn it on via the >Mains switch< [37]. → Page 42, section »Filling, venting and draining«. An error message appears on the display after a short time if the temperature control unit is switched on without thermal fluid. If this is the case, switch off the temperature control unit using the >Mains switch< [37] and fill it.
- Switch on the temperature control unit using the >Mains switch< [37]. The float switch monitors the thermal fluid level. For this, the float switch is automatically pressed down. The buoyancy of the float forces it upwards only when thermal fluid is filled and thus the test is passed. The test may generate some sounds. Circulation and temperature control are turned off.

4.1.2 Turning off the temperature control unit

PROCEDURE

- Warm the thermofluid to room temperature.
- Stop the thermoregulation.
- Switch off the temperature control unit using the >Mains switch< [37].

4.1.3 Setting the overtemperature (OT) protection

The overtemperature protection is set higher than the ignition temperature of the thermal fluid used

MORTAL DANGER FROM FIRE

- The overtemperature protection must be correctly set to the thermal fluid you are using.
- Always observe the safety data sheet of the thermal fluid.
- Set the cut-out value of the overtemperature protection at least 25 K below the fire point of the thermal fluid.

4.1.3.1 General information on the overtemperature protection

Example of a potentiometer at the temperature control unit

The overtemperature protection is installed only in temperature control units that have a heater. The flow temperature is monitored to ensure the safety of your system. It is set immediately after you have filled the system with thermal fluid.

Upon delivery, the cut-out value of the overtemperature protection is set to 40 °C. An alarm is triggered by the temperature control unit shortly after turning on the power if the temperature of the thermal fluid just filled is higher than the cut-out value set for the overtemperature protection. Set the overtemperature protection to the thermal fluid you are using. Please note: The printed scale can deviate by - 25 K from the set cut-out value.
4.1.3.2 Setting the overtemperature protection

**PROCEDURE**

- Use a screwdriver to set the cut-off value on the potentiometer. The cut-out value must be set to match the thermal fluid you are using. It is not required to switch on the temperature control unit.

### INFORMATION

You need a screwdriver (flat blade 1.0 x 5.5) to set the cut-out value of the overtemperature protection.

4.1.4 Testing the overtemperature protection for functionality

**DANGER**

Overtemperature protection (OT) does not trip

**MORTAL DANGER FROM FIRE**

- Test the response of the device every month and after each change of the thermal fluid in order to assure proper functioning.

**NOTE**

The steps below are carried out without permanent monitoring of the temperature control unit

**DAMAGE TO AND IN THE VICINITY OF THE TEMPERATURE CONTROL UNIT**

- The following actions may only be carried out while constantly monitoring the temperature control unit and the application!

**INFORMATION**

The overtemperature protection is installed only in temperature control units that have a heater. You need a sufficiently large-sized screwdriver to check the overtemperature protection for functionality.

**Steps to test the correct functioning of the overtemperature protection:**

**PROCEDURE**

- Note down the cut-out value of the overtemperature protection set on the potentiometer.
- Switch on the temperature control unit.
- Enter a setpoint (room temperature). → Page 39, section »Setting the setpoint«.
- Start the temperature control process by pressing the »Start/Stop button« [E].
- Use a screwdriver to set the new cut-off value on the potentiometer. This cut-out value must be below the indicated internal temperature. The overtemperature protection is triggered.
- Turn off the temperature control unit.
- Use a screwdriver to reset the cut-off value on the potentiometer to the original value.

**INFORMATION**

Immediately take the temperature control unit out of operation if the overtemperature protection is not triggered. Immediately contact Customer Support. → Page 68, section »Contact data«. Do not put the temperature control unit back into operation.
4.2 Filling, venting and draining

Observe the wiring diagram. → From page 69, section »Annex«.

### CAUTION

**Extremely hot / cold surfaces, connections and thermal fluids**

- **BURNS/FREEZING OF LIMBS**
  - Surfaces, connections and tempered thermal fluids can be extremely hot or cold depending on the operating mode.
  - Avoid direct contact with surfaces, connections and thermal fluids!
  - Wear your personnel protective equipment (e.g. temperature-resistant safety gloves, safety goggles).

### NOTE

**During an active circulation, the thermal fluid circuit is shut off by shut-off valves**

**MATERIAL DAMAGE TO THE CIRCULATING PUMPS INSTALLED IN THE TEMPERATURE CONTROL UNIT**

- Do not close the thermal fluid circuit during an active circulation by means of shut-off valves.
- Warm the thermal fluid to room temperature before stopping the circulation.

#### 4.2.1 Filling and venting externally closed application

### CAUTION

**Non-compliance with the safety data sheet for the thermal fluid to be used**

**INJURIES**

- Risk of injury to the eyes, skin, respiratory tract.
- The safety data sheet for the thermal fluid to be used must be read prior to using it and its content must be respected.
- Observe the local regulations/work instructions.
- Wear your personal protective equipment (e.g. temperature-resistant safety gloves, safety goggles, safety footwear).
- Danger of slipping because floor and work area are contaminated. Clean the workplace; observe the proper disposal of thermal fluid and aids. → Page 15, section »Proper disposal of resources and consumables«.

### NOTE

**Semi-automatic venting**

**DAMAGE TO THE TEMPERATURE CONTROL UNIT**

- An elevated tolerance time for the pressure drop can damage the pump if the thermal fluid level in the system is too low.
- Constantly observe the thermal fluid level on the >Sight glass< [23] or the >Level indicator and drain< [38]. Fill up the thermal fluid during the venting phase so the thermal fluid level does not fall below the minimum mark in the >Sight glass< [23] or the >Level indicator and drain< [38].

### NOTE

**The >Bypass valve< [62] (if any) is not adapted to the external application**

**MATERIAL DAMAGE TO THE EXTERNAL APPLICATION**

- A closed >Bypass valve< [62] can cause the pressure in the thermal fluid circuit to become too high for the external application used. It may cause the thermal fluid to overflow from the external application and/or damage the external application.
- Initial filling, switching to another thermal fluid or another external application: The >Bypass valve< [62] must be fully open before the circulation is started. As a result, the pressure in the thermal fluid circuit is at the lowest point.
- Note the pressure gauge when starting the circulation. The allowable pressure of your external application must not be exceeded.

### INFORMATION

Calculate whether the capacity of the >Expansion vessel< [38] can absorb the expansion volume during operation. Assume the following volumes for this calculation: [Minimum filling capacity of the temperature control unit] + [Volume of the thermal fluid hoses] + [Jacket volume of your application] + [10% / 100 K].

- • During the fill process, ensure any necessary measures, such as earthing the tanks, funnels and other aids, have been taken.
- • Fill to the lowest possible height.
4.2.1.1 Filling and venting with >Sight glass< [23]

<table>
<thead>
<tr>
<th>Fill levels in the &gt;Sight glass&lt; [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

PROCEDURE

- For temperature control units with >Bypass valves< [62], verify that they have been completely opened.
- Ensure that a hose was installed at the >Overflow< [12] (if installed). The other end of the hose must be inserted in a suitable collecting container. Excess thermal fluid will leak at this point when the temperature control unit is overfilled. Hose and container must be resistant to the thermal fluid and the temperature.
- Manually open the >Filling port< [17].
- Carefully pour suitable thermal fluid, using the filling accessories (funnel and/or beaker) into the >Filling port< [17]. The thermal fluid flows into the temperature control unit and through the hose connections to the external application. The fill level is displayed in the >Sight glass< [23]. Follow the instructions for the proper disposal when cleaning filling accessories. → Page 39, section »Proper disposal of resources and consumables«.
- Switch on the temperature control unit.
- Set the setpoint to 20 °C. → Page 39, section »Setting the setpoint«.
- Start the circulation by pressing the >Start/Stop button< [E].
- Refill thermal fluid as needed. Observe the fill level in the >Sight glass< [23]. The filling/venting process is complete when the temperature control unit is filled sufficiently.
- At temperature control units with > bypass valve< [62], adjust the pressure in the thermal fluid circuit to the employed external application. For this purpose, use the > bypass valve< [62] and the manometer on the display.
- Press the >Start/Stop button< [E] to stop circulation.
- Turn off the temperature control unit.
- Check the level in the collecting container. Empty the container when necessary and dispose of its contents properly.
- Close the >Filling port< [17] manually. The temperature control unit is now filled.

INFORMATION

If, with externally closed applications (reactors), the fluid level in the fill level display remains the same when the pump is running and when the pump has stopped, the application has been vented.

- Venting must be performed especially during commissioning and after a change of thermal fluid. This is the only way to ensure trouble-free operation.
- Note that the volume expansion of the thermal fluid depends on the working temperature range you wish to work in. At the “lowest” working temperature, do not go beyond the minimum mark of the >Sight glass< [23] and at the “highest” working temperature there should be no overflow from the >Expansion vessel< [18]. In case of overfilling, drain the excess amount of thermal fluid. → Page 45, section »Draining with >Sight glass< [23][c]. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 39, section »Proper disposal of resources and consumables«.
4.2.1.2 Filling and venting with >Level indicator and drain< [38]

PROCEDURE

- Verify that the hose of the >Level indicator and drain< [38] has not been pulled out.
- Manually open the >Filling port< [17].
- Carefully pour suitable thermal fluid, using the filling accessories (funnel and/or beaker) into the >Filling port< [17]. The thermal fluid flows into the temperature control unit and through the hose connections to the external application. Fill the temperature control unit up to 1 cm below the hose end of the >Level indicator and drain< [38]. Follow the instructions for the proper disposal when cleaning filling accessories. → Page 15, section »Proper disposal of resources and consumables«.
- Switch on the temperature control unit.
- Set the setpoint to 20 °C. → Page 39, section »Setting the setpoint«.
- Start the circulation by pressing the >Start/Stop button< [E].
- Refill thermal fluid as needed. Observe the fill level in the >Level indicator and drain< [38]. The fill level may never fall below the minimum marking. The filling/venting process is complete when the temperature control unit is filled sufficiently.
- Stop the circulation by pressing the >Start/Stop button< [E].
- Manually close the >Filling port< [17].

The temperature control unit is now filled.

If, with externally closed applications (reactors), the fluid level in the fill level display remains the same when the pump is running and when the pump has stopped, the application has been vented.

INFORMATION

Venting must be performed especially during commissioning and after a change of thermal fluid. This is the only way to ensure trouble-free operation.

Note that the volume expansion of the thermal fluid depends on the working temperature range you wish to work in. At the “lowest” working temperature, do not go beyond the minimum mark of the >Level indicator and drain< [38] and at the “highest” working temperature there should be no overflow at the >Level indicator and drain< [38]. Fill the temperature control unit up to about 1 cm below the hose end. In case of overfilling, drain the excess amount of thermal fluid. → Page 45, section >Draining with >Level indicator and drain< [38]. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
4.2.2 Draining externally closed applications

**CAUTION**

**SEVERE BURNS/FROSTBITE OF LIMBS**

- Before draining, ensure that the thermal fluid has room temperature (20 °C).
- If, at this temperature, the thermal fluid is too viscous to be drained: Control the temperature of the thermal fluid for a few minutes until the viscosity will allow drainage. Never control the temperature of the thermal fluid when the drain is open.
- Danger of burns when draining thermal fluids at temperatures above 20 °C.
- Wear your Personal Protective Equipment for draining.
- Only drain using suitable drainage hose and collecting container. These must be compatible with the thermal fluid and its temperature.

### 4.2.2.1 Draining with >Sight glass< [23]

**PROCEDURE**

**Temperature control units without >Residues drain< [10]**

- Have a suitable container ready to catch the thermal fluid.
- Remove the knurled screw at the >Drain< [8]. As soon as you have opened the knurled screw, the thermal fluid will flow from the external application over the temperature control unit and into the container. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Wait until the external application and the temperature control unit are empty.
- Open the connection >Circulation flow< [1].
- Open the connection >Circulation return< [2].
- Leave the temperature control unit open for a while to allow it to dry out and the residue to drain.
- Close the connection >Circulation flow< [1].
- Close the connection >Circulation return< [2].
- Re-fit the knurled screw to the >Drain< [8].

The temperature control unit is now drained.

**Temperature control units with >Residues drain< [10]**

- Have a suitable container ready to catch the thermal fluid.
- Remove the knurled screw from the >Residues drain< [10]. The remaining thermal fluid will flow from the temperature control unit into the container as soon as you have opened the knurled screw. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Wait until no more thermal fluid flows from the >Drain< [8].
- Remove the knurled screw from the >Residues drain< [10]. The remaining thermal fluid will flow from the temperature control unit into the container as soon as you have opened the knurled screw. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Wait until the temperature control unit is empty.
- Open the connection >Circulation flow< [1].
- Open the connection >Circulation return< [2].
- Leave the temperature control unit open for a while to allow it to dry out and the residue to drain.
- Close the connection >Circulation flow< [1].
- Close the connection >Circulation return< [2].
- Re-fit the knurled screw to the >Residues drain< [10].
- Re-fit the knurled screw to the >Drain< [8].

The temperature control unit is now drained.

### 4.2.2.2 Draining with >Level indicator and drain< [38]

**PROCEDURE**

- Have a suitable container ready to catch the thermal fluid.
- Pull the hose from the >Level indicator and drain< [38]. As soon as you have pulled out the hose, the thermal fluid will flow from the external application over the temperature control unit and
into the container. Check if the thermal fluid can be reused. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.

- Wait until the external application and the temperature control unit are empty.
- Open the connection >Circulation flow< [1].
- Open the connection >Circulation return< [2].
- Leave the temperature control unit open for a while to allow it to dry out and the residue to drain.
- Close the connection >Circulation flow< [1].
- Close the connection >Circulation return< [2].
- Reinsert the hose into the >Level indicator and drain< [38].

The temperature control unit is now drained.
5 Normal operation

5.1 Automatic operation

**CAUTION**

Extremely hot / cold surfaces, connections and thermal fluids

- Surfaces, connections and tempered thermal fluids can be extremely hot or cold depending on the operating mode.
- Avoid direct contact with surfaces, connections and thermal fluids!
- Wear your personnel protective equipment (e.g. temperature-resistant safety gloves, safety goggles).

**NOTE**

During an active circulation, the thermal fluid circuit is shut off by shut-off valves

MATERIAL DAMAGE TO THE CIRCULATING PUMPS INSTALLED IN THE TEMPERATURE CONTROL UNIT

- Do not close the thermal fluid circuit during an active circulation by means of shut-off valves.
- Warm the thermal fluid to room temperature before stopping the circulation.

5.1.1 Temperature control

5.1.1.1 Starting the temperature control process

The temperature control process can be started after filling and complete venting.

**PROCEDURE**

- With the temperature control unit switched on and thermoregulation/circulation stopped, press the >Start/Stop button< [E].
  Thermoregulation starts.

5.1.1.2 Ending the temperature control process

**NOTE**

When the temperature control unit is switched off, the thermal fluid temperature is higher/lower than room temperature

DAMAGE TO THE TEMPERATURE CONTROL UNIT AND THE GLASS APPARATUS/APPLICATION

- Bring the thermal fluid up to room temperature using the temperature control unit.
- Do not close the shut-off valves in the thermal fluid circuit.

Thermoregulation can be terminated at any time. Thermoregulation and circulation are switched off immediately afterwards.

**PROCEDURE**

- With the temperature control unit switched on and thermoregulation/circulation started, press the >Start/Stop button< [E].
  Thermoregulation stops.
6 Interfaces and data communication

**NOTE**

The specifications of the interface used are not being met.

**PROPERTY DAMAGE**

- Only connect components that meet the specifications of the interface used.

6.1 Controller interfaces

![Controller interfaces diagram]

6.1.1 USB-2.0 interface

**INFORMATION**

The interfaces used must meet the specifications of the generally accepted standards. The necessary drivers for the interface can be found at: www.ftdichip.com/Drivers/VCP.htm

6.1.1.1 USB-2.0 interface, device

USB-2.0 connection (for Mini-B connector) for communicating with a computer.

6.1.2 RS232 jack

A PC, a SPS or a Process Control System (PCS) can be connected to this jack for remote control of the controller electronics. Before plugging in the cable, check the settings in the "Interfaces" category and adjust if necessary.

**INFORMATION**

The interfaces used must meet the specifications of the generally accepted standards.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RxD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Signal GND</td>
</tr>
</tbody>
</table>

6.2 Interfaces on the temperature control unit (optional)

**NOTE**

Connecting to the interfaces at the temperature control unit during operation

**DAMAGE TO THE INTERFACES**

- When devices in operation are connected with interfaces of the temperature control unit, interfaces may get damaged.
- Before connecting, ensure the temperature control unit and the device to be connected are turned off.

For the exact position of the interfaces, please refer to the wiring diagram. ➔ From page 69, section »Annex«.
6.2.1 RS232 jack
A PC, a SPS or a Process Control System (PCS) can be connected to this jack for remote control of the controller electronics.

**INFORMATION**
The interfaces used must meet the specifications of the generally accepted standards.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RxD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Signal GND</td>
</tr>
</tbody>
</table>

6.2.2 Connection jack for Pt100 process display sensor
A temperature sensor located in the connected application (Pt100, 4-wire technology, Lemosa connector) is connected to the Pt100 port. It records and displays the external actual temperature.

**INFORMATION**
Only use shielded sensor cables. We recommend the external Pt100 process sensor from the Huber accessories program.

6.2.3 Jack ECS (External Control Signal) standby
Enable signal ECS (external control signal) for starting/stoping the temperature control process.

Activation via a potential-free contact. Contacts 1 and 3 are internally bypassed. ECS is energized when E1 and E2 are connected by an external floating contact. Contact specification: min. 0.1 A / 24 V DC.

The functionality of the ECS is specified in the “Interfaces” menu item.

The following variants are offered:
- **“Off”:** Switching the contacts open/closed or closed/open has no effect.
- **“Setpoint2”:** An open contact causes a thermoregulation to its original “Setpoint1”. A closed contact causes a thermoregulation to “Setpoint2”.
- **“Stand-by”:** The temperature control process starts when switching from an open to a closed contact. The temperature control process switches off when switching from a closed to an open contact.
The interface is specified as a digital input. Do not apply voltage or current.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>E2</td>
</tr>
<tr>
<td>2</td>
<td>E1</td>
</tr>
</tbody>
</table>

### 6.2.4 Connector POKO (floating contact) alarm

Signal contact for external monitoring.

The floating contact (PoKo) signals the state of the temperature control unit via the contact positions. A closed normally open contact means readiness for operation. If a fault or an error occurs, the normally open contact is opened (this applies to the make contact between pin 1 and pin 2).

**The following settings are offered:**
- **“Off”:** POKO is without function.
- **“Alarm”:** The POKO relay becomes active (OK state) in this function only, if the temperature control unit is switched on and is in “Fault” mode.
- **“Unipump/PCS”:** This POKO function and the enable contact of the pump guarantee that the external pump runs synchronously with the pump in the temperature control unit if an external pressure booster pump is used in your temperature control circuit / cooling water circuit, i.e. the POKO assumes the OK state as soon as the internal pump is started up.

**PCS:** The POKO is used to communicate the state of the temperature control unit to the process control system.

POKO condition **ON** means the pump is running.

POKO condition **OFF** means the pump is not running, the temperature control unit is in stand-by mode.

With the floating contact, use only sheathed lines! The interface is specified as a digital output.

The connection is designed as a potential-free changeover contact.

Closing contact between pin 1 and pin 2.
Opening contact between pin 2 and pin 3.
Contact load: 1 A at 24 V DC.
6.3 Data communication

The communication via the RS232 interface is a master-slave communication. The Master (e.g. PC or PLC) starts a communication and the slave (the temperature control unit) will only respond to a request.

Transmission format:
8 data bits, 1 stop bit, no parity, no handshake
These parameters are non-adjustable and cannot be changed! The baud rate can be set in a range from 9600 baud to 115200 baud.

Time response (timing):
The data flow of a command must not be interrupted. Pauses of more than 100 ms between the characters of a command result in the receiver aborting the incoming command. The temperature control unit will always send a response for a correctly received command. The next command can be sent once a complete response was received. The typical response time is less than 300 ms.

You need the software “SpyControl” to transmit commands. The software can be downloaded from the download area of www.huber-online.com.

6.3.1 LAI commands

There are 3 commands to communicate LAI commands to the temperature control unit:

1. “V” (Verify) – to query the device ID,
2. “L” (Limit) – to query the device limits,
3. “G” (General) – to control and query the temperature control unit.

The send commands always begin with “[M01”, answers always with “[S01”, followed by the command qualifier “V” (Verify), “L” (Limits) or “G” (General). The next two bytes specify the length or the response of the command. A checksum is transmitted to increase data safety. The checksum is the 1 byte sum of all hex values from the start character to the last character before the checksum. It is appended to the end of the command or the response and then finished off with the end character CR (“\r”, 0Dh).

<table>
<thead>
<tr>
<th>Byte</th>
<th>Command</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>1</td>
<td>Start character, fix</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Slave address, fix</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Slave address, fix</td>
</tr>
<tr>
<td>4</td>
<td>V / L / G</td>
<td>V / L / G</td>
<td>Command qualifier (V = Verify, L = Limit, G = General)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>Length of command / response (example)</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>Length of command / response (example)</td>
</tr>
<tr>
<td>n</td>
<td>x</td>
<td>x</td>
<td>If applicable, content; the number of bytes depends on the command</td>
</tr>
<tr>
<td>I-2</td>
<td>C</td>
<td>C</td>
<td>Checksum (example)</td>
</tr>
<tr>
<td>I-1</td>
<td>6</td>
<td>1</td>
<td>Checksum (example)</td>
</tr>
<tr>
<td>1</td>
<td>\r</td>
<td>\r</td>
<td>End-of-text character CR</td>
</tr>
</tbody>
</table>
6.3.1.1 Command “V” (Verify)

This command is provided to check the presence of a slave and query its ID.

<table>
<thead>
<tr>
<th>Byte</th>
<th>ASCII</th>
<th>Hex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5Bh</td>
<td>Start character</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>4Dh</td>
<td>Master ID</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>30h</td>
<td>Slave address</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>31h</td>
<td>Slave address</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>56h</td>
<td>Command qualifier</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>30h</td>
<td>Length of data field (0)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>37h</td>
<td>Length of data field (7)</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>43h</td>
<td>Checksum</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>36h</td>
<td>Checksum</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0Dh</td>
<td>End character CR</td>
</tr>
</tbody>
</table>

The checksum is formed from bytes 1 to 7: 

5Bh + 4Dh + 30h + 31h + 56h + 30h + 37h = 1C6h = 1 byte sum = C6h

The hex value C6h is appended as two ASCII characters “C” (43h) and “6” (36h).

The slave responds: [S01V14Huber ControlC1r]

The 13 bytes of the data set “Huber Control” plus the 7 bytes in front of the data set result in a data field length of 20 bytes = 14h bytes.

6.3.1.2 Command “L” (Limit)

This command is used to query the setpoint limits.

<table>
<thead>
<tr>
<th>Byte</th>
<th>ASCII</th>
<th>Hex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5Bh</td>
<td>Start character</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>4Dh</td>
<td>Master ID</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>30h</td>
<td>Slave address</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>31h</td>
<td>Slave address</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>4C</td>
<td>Command qualifier</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>30h</td>
<td>Length of data field (0)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>37h</td>
<td>Length of data field (7)</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>43h</td>
<td>Checksum</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>36h</td>
<td>Checksum</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0Dh</td>
<td>End character CR</td>
</tr>
</tbody>
</table>

A response always includes four limit values (starting from the eighth byte):

1. Lower setpoint limit (4 bytes),
2. upper setpoint limits (4 bytes),
3. lower working range limit (4 bytes),
4. upper working range limit (4 bytes).

The working range limits are device-specific and cannot be changed. The lower setpoint limit can not be lower than the lower working range limit and the upper setpoint limit can not exceed the upper working range limit.

The two bytes before the last byte contain the checksum and the last byte of the response contains the end character (CR).

Each of the four values is expressed as a hex value. The values are signed, where 1 bit corresponds to 0.01 K. Thus a number range from 0000h to 7FFFh, i.e. from 0.00 °C to 327.67 °C, can be represented. Negative numbers are represented from 8000h to 0000h, i.e. from -0.01 °C to -327.66 °C. Thus the four individual ASCII characters “F448” correspond to a 16-bit hex value of F448h and thus a temperature of -30 °C. → Page 53, section Command “G” (General).
### 6.3.1.3 Command “G” (General)

This command transmits the most important temperatures and status information in a cycle. A modified setpoint is not stored in the permanent memory, i.e. this value is lost when switching off the machine.

<table>
<thead>
<tr>
<th>Structure Command “G” (General)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Master sends:</strong> [M01G0Dsat<strong>tttt</strong>pp<strong>r</strong></td>
</tr>
<tr>
<td>1. <strong>Byte</strong></td>
</tr>
<tr>
<td>2. <strong>Byte</strong></td>
</tr>
<tr>
<td>3. <strong>Byte</strong></td>
</tr>
<tr>
<td>4. <strong>Byte</strong></td>
</tr>
<tr>
<td>5. <strong>Byte</strong></td>
</tr>
<tr>
<td>6. <strong>Byte</strong></td>
</tr>
<tr>
<td>7. <strong>Byte</strong></td>
</tr>
<tr>
<td>8. <strong>Byte</strong></td>
</tr>
<tr>
<td>9. <strong>Byte</strong></td>
</tr>
<tr>
<td>10. <strong>Byte</strong></td>
</tr>
<tr>
<td>11. <strong>Byte</strong></td>
</tr>
<tr>
<td>12. <strong>Byte</strong></td>
</tr>
<tr>
<td>13. <strong>Byte</strong></td>
</tr>
<tr>
<td>14. <strong>Byte</strong></td>
</tr>
<tr>
<td>15. <strong>Byte</strong></td>
</tr>
<tr>
<td>16. <strong>Byte</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure Command “G” (General)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Slave responds:</strong> [S01G15sait****ieeeepp<strong>r</strong></td>
</tr>
<tr>
<td>1. <strong>Byte</strong></td>
</tr>
<tr>
<td>2. <strong>Byte</strong></td>
</tr>
<tr>
<td>3. <strong>Byte</strong></td>
</tr>
<tr>
<td>4. <strong>Byte</strong></td>
</tr>
<tr>
<td>5. <strong>Byte</strong></td>
</tr>
<tr>
<td>6. <strong>Byte</strong></td>
</tr>
<tr>
<td>7. <strong>Byte</strong></td>
</tr>
<tr>
<td>8. <strong>Byte</strong></td>
</tr>
</tbody>
</table>

---

**Meaning of the characters in the send string:**
- “C” (43h) = Circulation, switch circulation on;
- “I” (49h) = Turn internal temperature control on;
- “O” (4Fh) = Off, turn temperature control off;
- “*” (2Ah) = Do not change the current state.

**Meaning of the characters in the response string:**
- “C” (43h) = Circulation, circulation is on;
- “I” (49h) = Internal temperature control is on;
- “O” (4Fh) = Off, temperature control is off.
Interfaces and data communication

OPERATION MANUAL Chapter 6

Minichiller® OLÉ, Unichiller® OLÉ V1.5.0en/09.08.21//1.0.0

<table>
<thead>
<tr>
<th>Byte</th>
<th>ASCII</th>
<th>Hex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Byte</td>
<td>a: 0 / 1</td>
<td>30h / 31h</td>
<td>Alarm status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meaning of the characters in the response string:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“0” (30h) = No alarm;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“1” (31h) = Any number other than “0” is an alarm</td>
</tr>
<tr>
<td>10. Byte</td>
<td>t</td>
<td></td>
<td>Query or set the setpoint</td>
</tr>
<tr>
<td>11. Byte</td>
<td>t</td>
<td>tttt / ****</td>
<td>Setpoint with 16-bit resolution (2 bytes, thus 4 ASCII characters)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“tttt” = 0000h (0.00 °C) to 7FFFh (327.67 °C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FFFFh (-0.01 °C) to 8000h (-327.68 °C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0190h corresponds to +4 °C, (30h, 31h, 39h, 30h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FE70h corresponds to -4 °C (46h, 45h, 37h, 30h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“*****” (2Ah, 2Ah, 2Ah, 2Ah) = no change to the setpoint, setpoint is only queried</td>
</tr>
<tr>
<td>12. Byte</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Byte</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Byte</td>
<td>i</td>
<td>iii</td>
<td>Internal actual value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Same format as setpoint</td>
</tr>
<tr>
<td>15. Byte</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Byte</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Byte</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Byte</td>
<td>e</td>
<td>eeee</td>
<td>External actual value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Same format as setpoint, depends on device configuration</td>
</tr>
<tr>
<td>19. Byte</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Byte</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Byte</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Byte</td>
<td>p</td>
<td></td>
<td>Checksum</td>
</tr>
<tr>
<td>23. Byte</td>
<td>p</td>
<td></td>
<td>Checksum</td>
</tr>
<tr>
<td>24. Byte</td>
<td>\r</td>
<td>0Dh</td>
<td>End character CR</td>
</tr>
</tbody>
</table>

Example:

The temperature control mode and the alarm status should remain unchanged (each “*”) and a setpoint of -4.00 °C (FE70) is to be set.

The master sends: [M01G0D**FE700A\r

The slave responds (for example): [S01G1500FE7009A4C504E7\r

The temperature control unit is turned off ("O"), there is no alarm ("0"), the setpoint of -4.00 °C was set (FE70), the actual value is 24.68 °C (09A4), "C504" corresponds to -151.00 °C and indicates that no external temperature sensor is installed or connected.

6.3.2 PP commands

There is another set of commands to make the communication with the temperature control unit easy. The PP commands can be used, e.g. in conjunction with simple terminal programs. The calculation of a checksum has therefore been omitted and the commands kept very simple. Each command is terminated with Carriage Return (\r', 0Dh) and Linefeed (\n', 0Ah). There are read and write commands. Each correct command causes a response from the temperature control unit. Temperature and setpoint values are represented by a five-digit number, which corresponds to the temperature being expressed in hundredths of a degree (without decimal point).
## Interfaces and data communication

### Chapter 6

#### Operation Manual

<table>
<thead>
<tr>
<th>Function</th>
<th>Master sends</th>
<th>Slave responds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the set-point</td>
<td>SP(?\n</td>
<td>SP +02500\n</td>
<td>The setpoint is set to 25.00 °C.</td>
</tr>
<tr>
<td>Read the internal actual value</td>
<td>TI(?\n</td>
<td>TI +02499\n</td>
<td>Currently, the internal actual value is 24.99 °C.</td>
</tr>
<tr>
<td>Read the external actual value</td>
<td>TE(?\n</td>
<td>TE +02499\n</td>
<td>Currently, the external actual value is 24.99 °C.</td>
</tr>
<tr>
<td></td>
<td>TE -15100\n</td>
<td></td>
<td>An external sensor is not connected or does not</td>
</tr>
<tr>
<td>Read the temperature control mode</td>
<td>CA(?\n</td>
<td>CA +00000\n</td>
<td>Temperature control and circulation are inactive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA +00001\n</td>
<td>Temperature control and circulation are active.</td>
</tr>
</tbody>
</table>

#### Available write commands

<table>
<thead>
<tr>
<th>Function</th>
<th>Master sends</th>
<th>Slave responds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the setpoint</td>
<td>SP@ -01234\n</td>
<td>SP -01234\n</td>
<td>The setpoint is set to -12.34 °C.</td>
</tr>
<tr>
<td>Starting the temperature control unit</td>
<td>CA@ 000001\n</td>
<td>CA +00001\n</td>
<td>The temperature control process is started.</td>
</tr>
<tr>
<td>Stopping the temperature control unit</td>
<td>CA@ 000000\n</td>
<td>CA +00000\n</td>
<td>The temperature control process is stopped.</td>
</tr>
</tbody>
</table>
7 Service/maintenance

7.1 Displays in the event of faults

An alarm signal (xx Hz) is sounded in the event of a fault and the temperature control unit displays an alarm or warning message on the OLED display.

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Effect, measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Overtemperature alarm</td>
<td>The internal temperature of the thermal fluid is above the set value of the overtemperature protection. Check whether the thermal fluid used matches your required parameters if overtemperatures repeatedly shut down the unit.</td>
</tr>
<tr>
<td>002</td>
<td>Tmax exceeded</td>
<td>The internal temperature of the thermal fluid is above the set point set limit in the controller. Control continues.</td>
</tr>
<tr>
<td>003</td>
<td>Tmin undercut</td>
<td>The internal temperature of the thermal fluid is below the set point set limit in the controller. Control continues.</td>
</tr>
<tr>
<td>004</td>
<td>Error float test</td>
<td>Check the thermal fluid level. KISS: Is the float blocked or sticky? Please contact Customer Support if the thermal fluid level is sufficient and the float of the KISS controller moves freely.</td>
</tr>
<tr>
<td>005</td>
<td>Low-level alarm</td>
<td>Control is inactive. (Pump off, compressor off, heating off) Check the fill level of the thermal fluid. Restart impossible until the thermal fluid level is OK.</td>
</tr>
<tr>
<td>006</td>
<td>Overpressure cutout triggered</td>
<td>Temperature and pressure increase in the condenser. An overpressure cutout (pressure switch) has triggered. Water cooling: a.) Is the cooling water supply correctly connected? b.) Is the suction strainer (dirt trap) clogged? c.) What is the cooling water temperature, the cooling water flow rate and the cooling water pressure? Air cooling: a.) Is the heat exchanger or the grille dirty? b.) Does the fan turn if the cooling machine is switched on? If the fan does not turn: Contact Customer Support.</td>
</tr>
<tr>
<td>009</td>
<td>Sensor F1 short</td>
<td>Control is inactive. (Pump off, compressor off, heating off) Check the sensor.</td>
</tr>
<tr>
<td></td>
<td>Sensor F2 short</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>Sensor F1 open</td>
<td>Control is inactive. (Pump off, compressor off, heating off) Check the sensor.</td>
</tr>
<tr>
<td></td>
<td>Sensor F2 open</td>
<td></td>
</tr>
</tbody>
</table>
### 7.2 Maintenance

#### Cleaning/maintenance while the temperature control unit is operating

**MORTAL DANGER FROM ELECTRIC SHOCK**
- Stop an ongoing temperature control process.
- Turn off the temperature control unit.
- Also disconnect the temperature control unit from the power supply.

#### Performing maintenance work not described in these operation manual

**MATERIAL DAMAGE ON THE TEMPERATURE CONTROL UNIT**
- Please contact Huber for maintenance work that is not described in these operation manual.
- Maintenance work not described in these operation manual is reserved for qualified specialists trained by Huber.
- Safety-relevant components may only be replaced by equivalent ones. The specified safety values for the respective component must be observed.

### 7.2.1 Function check and visual inspection

#### Inspection intervals

<table>
<thead>
<tr>
<th>Cooling*</th>
<th>Description</th>
<th>Maintenance interval</th>
<th>Comment</th>
<th>Person responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/W</td>
<td>Visually inspect hoses and hose connections</td>
<td>Prior to switching on the temperature control unit</td>
<td>Exchange leaking hoses and hose connections prior to switching on the temperature control unit. → Page 58, section »Replacing temperature control or coolant hoses«.</td>
<td>Operating company and / or operators</td>
</tr>
<tr>
<td>A/W</td>
<td>Check the fill level in the collecting container at the &gt;Overflow&lt; [12] (if present)</td>
<td>Prior to switching on the temperature control unit</td>
<td>Check the fill level in the collecting container. Empty as required. Follow the instructions for the proper disposal of thermal fluid. → Page 15, section »Proper disposal of resources and consumables«.</td>
<td>Operating company and / or operators</td>
</tr>
<tr>
<td>A/W</td>
<td>Inspection in accordance with the F-Gas Directive</td>
<td>In accordance with the F-Gas Directive</td>
<td>→ Page 17, section »Temperature control units with fluorinated greenhouse gases/refrigerants«.</td>
<td>Operating company</td>
</tr>
<tr>
<td>A/W</td>
<td>Check the power supply cable</td>
<td>Prior to switching on the temperature control unit or on relocation</td>
<td>Do not start the temperature control unit if the power supply cable is damaged.</td>
<td>Qualified electrician (BGV A3)</td>
</tr>
<tr>
<td>A</td>
<td>Clean the perforated sheet</td>
<td>As required</td>
<td>Clean the perforated sheet of the temperature control unit with a damp cloth</td>
<td>Operating company</td>
</tr>
</tbody>
</table>
## 7.2.2 Replacing temperature control or coolant hoses

Replace defective temperature control and/or coolant hoses before turning on the temperature control unit.

### 7.2.2.1 Replacing temperature control hoses

**PROCEDURE**

- Drain the temperature control unit. → Page 45, section »Draining externally closed applications«.
- Replace defective temperature control hoses. Observe the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Reconnect your external application. → Page 31, section »Connecting externally closed application«.
- Fill the temperature control unit with thermal fluid. → Page 42, section »Filling and venting externally closed application«.
- Vent the temperature control unit. → Page 42, section »Filling and venting externally closed application«.
- Restart the temperature control unit in normal mode.

### 7.2.2.2 Replacing coolant hoses

**PROCEDURE**

- Drain the cooling water. → Page 66, section »Draining the cooling water«.
- Replace the defective coolant hoses. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Reconnect the temperature control unit to the building’s cooling water supply. → Page 28, section »Temperature control units with water cooling«.
- Restart the temperature control unit in normal mode.
Chapter 7

7.2.3 Clean liquefier fins (air-cooled temperature control unit)

**Manual cleaning**

**RISK OF BEING CUT ON THE LIQUEFIER FINS**
- Wear suitable cut-resistant gloves for cleaning work.
- Depending on the ambient conditions, use cleaning equipment such as vacuum cleaners and/or a hand brush/brush. Follow the local regulations when cleaning. Do not clean the liquefier fins in a clean room with items like a brush and do not use a vacuum cleaner without an extra-fine particle filter.

**Cleaning using pointed or sharp-edged tools**

**DAMAGE TO THE LIQUEFIER FINS**
- Clean the liquefier fins using suitable cleaning appliances.

**NOTE**

Make sure there is adequate ventilation (removal of waste heat, fresh air supply) for the temperature control unit, in case of air cooling, maintain wall clearance. → Page 20, section »Exemplary illustrations of the cooling variants« and → Page 24, section »Ambient conditions«.

The liquefier fins must be cleaned (dust) from time to time as only then will the temperature control unit perform at its maximum cooling capacity.

Identify the position of the ventilation grille, usually located on the front. With some temperature control units, the ventilation grilles on the side wall, rear or on the underside (table units) of the temperature control unit.

**PROCEDURE**

**Ventilation grille on the front/rear or on a side wall**
- Turn off the temperature control unit.
- Disconnect the temperature control unit from the power supply.
- Remove the ventilation grille to create unhindered access to the liquefier fins.
- Clean the liquefier fins using suitable cleaning appliances. Observe the local regulations and ambient conditions when selecting cleaning appliances.
- Make sure the liquefier fins are not damaged or deformed as this will impair the air flow.
- Re-mount the ventilation grille after cleaning work.
- Turn on the temperature control unit.

**PROCEDURE**

**Ventilation grille on the underside (table-top units)**

**Cleaning of liquefier fins at the underside when the temperature control unit is filled**

**DAMAGE CAUSED BY THERMAL FLUID PENETRATING THE TEMPERATURE CONTROL UNIT**
- Empty the temperature control unit before cleaning the liquefier fins at the underside of the temperature control unit.

- Switch off the temperature control unit.
- Disconnect the temperature control unit from the power supply.
- Drain the thermal fluid from the temperature control unit. → Page 45, section »Draining externally closed applications«.
- Tilt the temperature control unit to remove the grille (if available) in front of the liquefier fins.
- Clean the liquefier fins using suitable cleaning appliances. Observe the local regulations and ambient conditions when selecting cleaning appliances.
- Make sure the liquefier fins are not damaged or deformed as this will impair the air flow.
- Re-mount the ventilation grille after cleaning work.
- Connect the temperature control unit to the power supply.
- Refill the temperature control unit with thermal fluid. → Page 42, section »Filling and venting externally closed application«.
7.2.4 Clean hat-type strainer (dirt trap) (water-cooled temperature control unit)

**NOTE**

**PROPERTY DAMAGE CAUSED BY FLOODING OF ROOMS**
- Close the building’s isolating valves in the cooling water supply and return lines.
- For table-top models, place a collection container below the >Cooling water drain< [15]. Observe the wiring diagram: ➔ From page 69, section »Annex«.

**INFORMATION**
The strainer at the cooling water inlet must be inspected and cleaned on a regular basis, depending on water quality.

**PROCEDURE**

**Table-top models:**
- Turn off the temperature control unit.
- Disconnect the temperature control unit from the power supply.
- Close the customer’s shut-off valves in the cooling water supply and return lines.
- Place a collecting container below the >Cooling water inlet< [13].
- Remove the cooling water supply line and take out the hat-type strainer for inspection and cleaning.
- Clean the suction strainer under running water.
- Following inspection/cleaning, reinsert the hat-type strainer and fasten the cooling water supply line.
- Remove the collecting container from below the >Cooling water inlet< [13].
- Open the customer’s shut-off valves in the cooling water supply and return lines.
- Connect the temperature control unit to the power supply.
- Turn on the temperature control unit.

**Free-standing models:**
- Switch off the temperature control unit.
- Disconnect the temperature control unit from the power supply.
- Close the customer’s isolating valves in the cooling water supply and return lines.
- Remove the paneling around the cooling water supply [13], [14] and [15] (if present).
- Place a collecting container below the >Cooling water inlet< [13] and another collecting container below the >Cooling water drain< [15] (if present).
- Open the ball valve of the >Cooling water drain< [15] (if present). If the temperature control unit is not equipped with a >Cooling water drain< [15]: Open the >Cooling water outlet< [13]. The cooling water will begin to drain out. Allow the cooling water to fully drain.
- Disconnect the >Cooling water inlet< [13] from the building’s cooling water supply. Located immediately behind the >Cooling water inlet< [13] is the dirt trap.
- Carefully detach the cover (hexagonal).
- Remove the metal strainer located below.
- Clean the metal strainer under running water.
- Re-insert the metal strainer after cleaning work.
- Carefully fasten the cover (hexagonal).
- Connect the >Cooling water inlet< [13] to the building’s cooling water supply.
- Close the ball valve of the >Cooling water drain< [15] (if present).
- Remove the collecting containers below the >Cooling water inlet< [13] and below the >Cooling water drain< [15] (if present). Dispose of the contents of the collecting containers. Follow the instructions for the proper disposal. ➔ Page 15, section »Proper disposal of resources and consumables«.
- Mount the paneling around the cooling water supply [13], [14] and [15] (if present).
- Open the customer’s isolating valves in the cooling water supply and return lines.
- Connect the temperature control unit to the power supply.
- Switch on the temperature control unit.

**INFORMATION**
We are also happy to offer you service training. Please contact Customer Support. ➔ Page 68, section »Contact data«.
7.3 Thermal fluid inspection, replacement and circuit cleaning

Observe the wiring diagram. → From page 69, section »Annex«.

**CAUTION**

Extremely hot / cold surfaces, connections and thermal fluids

**BURNS/FREEZING OF LIMBS**

- Surfaces, connections and tempered thermal fluids can be extremely hot or cold depending on the operating mode.
- Avoid direct contact with surfaces, connections and thermal fluids!
- Wear your personnel protective equipment (e.g. temperature-resistant safety gloves, safety goggles).

**NOTE**

During an active circulation, the thermal fluid circuit is shut off by shut-off valves

**MATERIAL DAMAGE TO THE CIRCULATING PUMPS INSTALLED IN THE TEMPERATURE CONTROL UNIT**

- Do not close the thermal fluid circuit during an active circulation by means of shut-off valves.
- Warm the thermal fluid to room temperature before stopping the circulation.

7.3.1 Thermal fluid replacement

**NOTE**

Mixing different thermofluids in a thermal fluid circuit

**PROPERTY DAMAGE**

- Do not mix different types of thermofluid (such as mineral oil, silicone oil, synthetic oil, water, etc.) in a thermofluid circuit.
- The thermal fluid circuit must be rinsed when changing from one type of thermal fluid to another. No residues of the previous type of thermal fluid may remain in the thermal fluid circuit.

7.3.1.1 Externally closed application

Observe the following when replacing the thermal fluid: → Page 42, section »Filling and venting externally closed application«. The draining and filling operations are described in this section.

7.3.2 Rinsing the thermal fluid circuit

**DANGER**

Setpoint and overtemperature protection are not adjusted to the thermofluid

**MORTAL DANGER FROM FIRE**

- The cut-out value of the overtemperature protection must be adapted to the thermofluid. Set the cut-out value of the overtemperature protection 25 K below the fire point of the thermofluid.
- The setpoint set during rinsing must be adjusted to the thermofluid used.

**CAUTION**

Non-compliance with the safety data sheet for the thermal fluid to be used

**INJURIES**

- Risk of injury to the eyes, skin, respiratory tract.
- The safety data sheet for the thermal fluid to be used must be read prior to using it and its content must be respected.
- Observe the local regulations/work instructions.
- Wear your personal protective equipment (e.g. temperature-resistant safety gloves, safety goggles, safety footwear).
- Danger of slipping because floor and work area are contaminated. Clean the workplace; observe the proper disposal of thermal fluid and aids. → Page 15, section »Proper disposal of resources and consumables«.

**NOTE**

Mixing different thermofluids in a thermal fluid circuit

**PROPERTY DAMAGE**

- Do not mix different types of thermofluid (such as mineral oil, silicone oil, synthetic oil, water, etc.) in a thermofluid circuit.
- The thermal fluid circuit must be rinsed when changing from one type of thermal fluid to another. No residues of the previous type of thermal fluid may remain in the thermal fluid circuit.
The inner components of the temperature control unit must be dried out. Need to avoid boiling retardation during future uses (e.g. use of a silicone oil at temperatures above about 100°C).

7.3.2.1 Rinsing a thermofluid circuit with >Sight glass< [23]

PROCEDURE

- Drain the temperature control unit. → Page 45, section »Draining with >Sight glass< [23]«.

INFORMATION

- Residual thermal fluid can remain in the pump chamber and the internal lines after draining. Leave the temperature control unit with open valves for a while.

- Check the fill level in the collecting container. Observe the proper disposal of thermal fluid. → Page 15, section »Proper disposal of resources and consumables«.
- Re-fit the knurled screw to the >Residues drain< [10] (if present).
- Re-fit the knurled screw to the >Drain< [8].

INFORMATION

- Perform the following steps without attaching a short circuit hose, if the application used by you (externally closed) is also dirty. In this case, leave your externally closed application connected to the temperature control unit. This rinses the temperature control unit and your application at the same time.

- Fill the system (minimum fill level) with the thermal fluid you wish to use. → Page 43, section »Filling and venting with >Sight glass< [23]«.
- Vent the system. → Page 43, section »Filling and venting with >Sight glass< [23]«.
- Adjust the setpoint and the cut-out value of the overtemperature protection to the thermal fluid used. → Page 39, section »Setting the setpoint« and → Page 40, section »Setting the over-temperature (OT) protection«.
- Start the circulation. The length of rinsing depends on the level of soiling.
- Stop the circulation.
- Drain the temperature control unit. → Page 45, section »Draining with >Sight glass< [23]«.
- Repeat the steps “Filling”, “Venting”, “Start/Stop circulation” and “Draining” until the drained thermal fluid remains clear.
- Remove the bypass hose after completely draining the temperature control unit.

INFORMATION

- Leave an application connected, if you have simultaneously rinsed a used application (externally closed).

- Leave the >Drain< [8] and >Residues drain< [10] (if any) open for a while to allow the thermal fluid to evaporate in the temperature control unit.
- Close the >Drain< [8] and >Residues drain< [10] (if any) once the thermal fluid has evaporated.
- Remove the collecting container. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.
- Re-connect your application. (Only if you have rinsed the thermal fluid circuit using a bypass hose.)
- Fill the temperature control unit with thermal fluid. → Page 43, section »Filling and venting with >Sight glass< [23]«.
- Vent the temperature control unit. → Page 43, section »Filling and venting with >Sight glass< [23]«.
- Restart the temperature control unit in normal mode.
7.3.2.2 Rinsing the thermofluid circuit with >Level indicator and drain< [38]

PROCEDURE

- Drain the temperature control unit. → Page 45, section »Draining with >Level indicator and drain< [38]«.

INFORMATION

Residual thermal fluid can remain in the pump chamber and in the internal lines after draining. Therefore leave the temperature control unit open for a while.

- Check the fill level in the collecting container. Follow the instructions for the disposal of thermal fluid. → Page 15, section »Proper disposal of resources and consumables«.
- Reinsert the hose into the >Level indicator and drain< [38].

INFORMATION

Perform the following steps without attaching a short circuit hose, if the application used by you (externally closed) is also dirty. In this case, leave your externally closed application connected to the temperature control unit. This rinses the temperature control unit and your application at the same time.

- Fill the system (minimum fill level) with the thermal fluid you wish to use. → Page 44, section »Filling and venting with >Level indicator and drain< [38]«.

- Vent the system. → Page 44, section »Filling and venting with >Level indicator and drain< [38]«.

- Adjust the setpoint and the cut-out value of the overtemperature protection to the thermal fluid used. → Page 39, section »Setting the setpoint« and → Page 40, section »Setting the overtemperature (OT) protection«.

- Start the circulation. The length of rinsing depends on the level of soiling.

- Stop the circulation.

- Drain the temperature control unit. → Page 45, section »Draining with >Level indicator and drain< [38]«.

- Repeat the steps “Filling”, “Venting”, “Start/Stop circulation” and “Draining” until the drained thermal fluid remains clear.

- Remove the bypass hose after completely draining the temperature control unit.

- Leave an application connected, if you have simultaneously rinsed a used application (externally closed).

- Leave the temperature control unit open for a longer while to allow the thermal fluid remaining in the temperature control unit to evaporate.

- Reinsert the hose into the >Level indicator and drain< [38].

- Remove the collecting container. Follow the instructions for the proper disposal. → Page 15, section »Proper disposal of resources and consumables«.

- Re-connect your application. (Only if you have rinsed the thermal fluid circuit using a bypass hose.)

- Fill the system. → Page 44, section »Filling and venting with >Level indicator and drain< [38]«.

- Vent the system. → Page 44, section »Filling and venting with >Level indicator and drain< [38]«.

- Restart the temperature control unit in normal mode.

7.4 Cleaning the surfaces

⚠️ CAUTION

Extremely hot / cold surfaces, connections and thermal fluids

- BURNS/FREEZING OF LIMBS
  - Surfaces, connections and tempered thermal fluids can be extremely hot or cold depending on the operating mode.
  - Avoid direct contact with surfaces, connections and thermal fluids!
  - Wear your personnel protective equipment (e.g. temperature-resistant safety gloves, safety goggles).

NOTE

Exposed plug contacts

- DAMAGE CAUSED BY FLUID INGRESS
  - Protect unused plug contacts with the protective caps supplied.
  - Clean surfaces only with a damp cloth.
A standard stainless steel cleaning agent is suitable for cleaning the stainless steel surfaces. Carefully clean painted surfaces (damp only) using a solution of sensitive-fabrics detergent. Observe the proper disposal of thermal fluid and aids. → Page 15, section »Proper disposal of resources and consumables«.

7.5 Inspect the mechanical seal

**NOTE**

<table>
<thead>
<tr>
<th>No visual inspection of the mechanical seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL DAMAGE IN THE TEMPERATURE CONTROL UNIT CAUSED BY LEAKING MECHANICAL SEAL</td>
</tr>
<tr>
<td>➢ Check the mechanical seal once a month.</td>
</tr>
<tr>
<td>➢ If case of leakage, stop the temperature control unit and contact Customer Support. → Page 68, section »Contact data«.</td>
</tr>
</tbody>
</table>

Expect the formation of drops at the mechanical seal when operating with thermal fluids that evaporate only very slowly, as mechanical seals are never absolutely tight. These drops must be removed if necessary. → Page 57, section »Function check and visual inspection«. The tightness of the mechanical seal must be visually checked. In case of a leakage, more thermal fluid escapes at the bottom of the temperature control unit. Observe the proper disposal of thermal fluid. → Page 15, section »Proper disposal of resources and consumables«.

7.6 Plug contacts

**NOTE**

<table>
<thead>
<tr>
<th>Exposed plug contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMAGE CAUSED BY FLUID INGRESS</td>
</tr>
<tr>
<td>➢ Protect unused plug contacts with the protective caps supplied.</td>
</tr>
<tr>
<td>➢ Clean surfaces only with a damp cloth.</td>
</tr>
</tbody>
</table>

Protective caps are supplied for all plug contacts. Make sure that any plug contacts not required are protective with the caps.

7.7 Decontamination/repairs

**CAUTION**

<table>
<thead>
<tr>
<th>Returning a not decontaminated temperature control unit for repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL INJURY AND PROPERTY DAMAGE CAUSED BY HAZARDOUS MATERIALS IN OR ON THE TEMPERATURE CONTROL UNIT</td>
</tr>
<tr>
<td>➢ Carry out appropriate decontamination.</td>
</tr>
<tr>
<td>➢ The decontamination process depends on the type and quantity of the materials used.</td>
</tr>
<tr>
<td>➢ Consult the relevant safety data sheet.</td>
</tr>
<tr>
<td>➢ You will find a prepared return receipt at <a href="http://www.huber-online.com">www.huber-online.com</a>.</td>
</tr>
</tbody>
</table>

As the responsible body you are responsible for carrying out decontamination before third-party personnel come into contact with the temperature control unit / accessory. Decontamination must be carried out before the temperature control unit / accessory is returned for repair or inspection. Attach a clearly visible written notice stating that the temperature control unit / accessory has been decontaminated.

To simplify the process, we have prepared a form for you. This is available for download at www.huber-online.com.
8 Shutting down

8.1 Safety instructions and basic principles

**DANGER**
Connection/adjustment to the power supply not carried out by an electrician and/or connection to a power socket without protective earth (PE)
MORTAL DANGER FROM ELECTRIC SHOCK
- Have the connection/adjustment to the power supply carried out by an electrician.
- Always connect the temperature control unit to safety sockets (PE).

**DANGER**
Damaged power cable/power cable connection
MORTAL DANGER FROM ELECTRIC SHOCK
- Do not start up the temperature control unit.
- Isolate the temperature control unit from the power supply.
- Have the power supply cable/power supply connection replaced and inspected by an electrician.
- Do not use a power cable that is longer than 3 m.

**WARNING**
Risk of tipping due to unstable temperature control unit
SERIOUS INJURY AND PROPERTY DAMAGE
- Avoid risk of tipping due to unstable temperature control unit.

**CAUTION**
Non-compliance with the safety data sheet for the thermal fluid to be used
INJURIES
- Risk of injury to the eyes, skin, respiratory tract.
- The safety data sheet for the thermal fluid to be used must be read prior to using it and its content must be respected.
- Observe the local regulations/work instructions.
- Wear your personal protective equipment (e.g. temperature-resistant safety gloves, safety goggles, safety footwear).
- Danger of slipping because floor and work area are contaminated. Clean the workplace; observe the proper disposal of thermal fluid and aids. → Page 15, section »Proper disposal of resources and consumables«.

**CAUTION**
Hot or very cold thermal fluid
SEVERE BURNS/FROSTBITE OF LIMBS
- Before draining, ensure that the thermal fluid has room temperature (20 °C).
- If, at this temperature, the thermal fluid is too viscous to be drained: Control the temperature of the thermal fluid for a few minutes until the viscosity will allow drainage. Never control the temperature of the thermal fluid when the drain is open.
- Danger of burns when draining thermal fluids at temperatures above 20 °C.
- Wear your Personal Protective Equipment for draining.
- Only drain using suitable drainage hose and collecting container. These must be compatible with the thermal fluid and its temperature.

**INFORMATION**
All safety instructions are important and must be followed accordingly during working operations!

8.2 Switch-off

**PROCEDURE**
- Turn off the temperature control unit.
- Disconnect the temperature control unit from the power supply connection.
8.3 Draining the temperature control unit

PROCEDURE

- Drain the temperature control unit. → From page 42, section »Filling, venting and draining«.

8.4 Draining the cooling water

INFORMATION

This section must be observed when using water-cooled temperature control units.

8.4.1 Draining process

**CAUTION**

Pressurized cooling water connections

**RISK OF INJURY**

- Wear your personnel protective equipment (e.g. safety goggles).
- Carefully open the cooling water connection. Open slowly (1-2 signal edges) and drain the cooling water slowly.

**NOTE**

The building’s isolating valves are not closed

**DAMAGE BY ROOM FLOODING**

- Close the building’s isolating valves in the cooling water supply and return lines.
- For table-top models, place a collection container below the >Cooling water outlet< \[14\] and/or >Cooling water drain< \[15\] (if any).

**PROCEDURE**

Temperature control units with >Cooling water drain< \[15\]

- Close the isolating valves in the water supply on the temperature control unit (if present) and on the building side.
- Place a collecting container below the cooling water outlet \[13\], \[14\] and \[15\].
- Open the >Cooling water drain< \[15\] and disconnect the >Cooling water outlet< \[14\] from the water return. The cooling water will begin to drain out. Allow all the cooling water to drain out to prevent the risk of freezing during transport and storage!
- Disconnect the >Cooling water inlet< \[13\] from the water supply.
- Close the >Cooling water drain< \[15\].

**PROCEDURE**

Temperature control units without >Cooling water drain< \[15\]

- Close the isolating valves in the water supply on the temperature control unit (if present) and on the building side.
- Place a collecting container below the cooling water outlet \[13\] and \[14\].
- Disconnect the >Cooling water outlet< \[14\] from the water return flow. The cooling water will begin to drain out. Allow all the cooling water to drain out to prevent the risk of freezing during transport and storage!
- Disconnect the >Cooling water inlet< \[13\] from the water supply.

8.5 Deinstalling the collecting container

**PROCEDURE**

- Remove the hose from the collecting container.
- Follow the instructions for the proper disposal of thermal fluid. → Page 15, section »Proper disposal of resources and consumables«.
- Dismantle the hose at the >Overflow< \[12\].
8.6 Uninstalling an external application

PROCEDURE

➢ Disconnect the external application from the temperature control unit.

8.7 Packing

Always use the original packaging! ➔ Page 24, section »Unpacking«.

8.8 Shipping

NOTE

Temperature control unit transported in a horizontal position

DAMAGE TO THE COMPRESSOR

➢ Only transport the temperature control unit in an upright position.

NOTE

Temperature control unit transported incorrectly

PROPERTY DAMAGE

➢ Do not transport by truck on the castors or feet.
➢ Comply all requirements in this section to avoid damage to the temperature control unit.

Transport using the lugs, if fitted, on the top of the temperature control unit. Do not transport the temperature control unit alone and without aids.

➢ Always use the original packaging for transportation.
➢ Indicate the upright transport position with arrows on the packaging.
➢ Always transport the temperature control unit upright on a pallet!
➢ Protect attachments from damage during transportation!
➢ During transport, place the temperature control unit on squared timber to protect the casters/feet.
➢ Secure with tensioning belts/lashing straps that are suitable for the weight.
➢ Additionally secure (depending on model) with plastic film, cardboard and straps.
8.9 Disposal

Uncontrolled or incorrect opening of the coolant circuit

RISK OF INJURY AND ENVIRONMENTAL DAMAGE

- Work on the coolant circuit and disposal of the refrigerant must be carried out by approved refrigeration/air-conditioning system contractors.
- Please strictly observe: Page 17, section »Temperature control units with fluorinated greenhouse gases/refrigerants«.

Improper disposal

ENVIRONMENTAL DAMAGE

- Spilled/leaked thermal fluid must be discarded immediately and correctly. Page 15, section »Proper disposal of resources and consumables«.
- To avoid environmental damage, have “disused” temperature control units disposed of exclusively by approved waste management companies (e.g. refrigeration and air conditioning companies).
- Please strictly observe: Page 17, section »Temperature control units with fluorinated greenhouse gases/refrigerants«.

Huber temperature control units and Huber accessories are made of high quality, recyclable materials. For example: Stainless steel 1.4301 / 1.4401 (V2A), copper, nickel, FKM, Perbunan, NBR, ceramic, carbon, Al-Oxid, red brass, brass, nickel-plated brass and silver solder. Proper recycling of the temperature control unit and accessories can actively help reduce CO2 emissions in the production of these materials. Follow the laws and regulations of your jurisdiction when disposing material.

8.10 Contact data

Contact your supplier or local specialist retailer prior to returning the temperature control unit. The contact data can be found on our homepage www.huber-online.com under the heading „Contact“. Please keep the serial number of the temperature control unit ready. The serial number can be found on the nameplate of the temperature control unit.

8.10.1 Telephone number: Customer Support

If your country is not mentioned in the list below: The responsible service partner can be found on our homepage www.huber-online.com under the heading „Contact“.

- Huber Deutschland: +49 781 9603 244
- Huber China: +86 (20) 89001381
- Huber India: +91 80 2364 7966
- Huber Ireland: +44 1773 82 3369
- Huber Italia: +39 0331 181493
- Huber Swiss: +41 (0) 41 854 10 10
- Huber UK: +44 1773 82 3369
- Huber USA: +1 800 726 4877 | +1 919 674 4266

8.10.2 Telephone number: Sales

Telephone: +49-781-9603-123

8.10.3 Email address: Customer Support

Email: support@huber-online.com

8.11 Certificate of Compliance

This certificate must be enclosed with the temperature control unit. Page 64, section »Decontamination/repairs«.
Inspired by **temperature**
designed for you

-125 °C ...+425 °C

Peter Huber Kältemaschinenbau SE
Werner-von-Siemens-Str. 1
77656 Offenburg / Germany

Telefon +49 (0)781 9603-0
Telefax +49 (0)781 57211

info@huber-online.com
www.huber-online.com

Technischer Service: +49 (0)781 9603-244

Betriebsanleitung  ·  Operation manual  ·  Manual de
instrucciones  ·  Manuel d'utilisation  ·  Manuale de d'uso

· 사용 설명서  ·  Manual de instruções  ·  Инструкция
по эксплуатации  ·  Kullanım talimatı  ·  操作说明书

-125 °C ...+425 °C